Physical-Mechanical and Technological Characteristics of Ti10Zr Alloy for Dental Applications

  • Vlad Gabriel VASILESCU “Carol Davila” Medicine and and Pharmacy University
  • Elisabeta VASILESCU "Dunarea de Jos" University of Galati
Keywords: biocompatibility implant, melting, cold crucible, casting, titanium-zirconium, microstructure

Abstract

Progress reported over time in dentistry can be attributed largely to the dynamics of acquiring new materials. A biomaterial is considered ideal in the absence of any biomaterial-tissue interaction, which means a biomaterial totally inert to the biological medium. Biomaterials currently used as implants that come in contact with the tissues and substances and fluids in the body must meet two basic characteristics, called bio-functionality and biocompatibility. They define both the ability to fulfill its function properly and the compatibility of the implant biomaterial with the tissue that it incorporates. The most common are metallic biomaterials (metals and alloys) due to their very good mechanical properties and their accepted biocompatibility. Issues related to the use of metallic materials in dental biomaterials (prostheses, implants) include mainly corrosion, release of toxic metal ions and wear. The toxicity of the metal ions as particles resulting from wear is a major disadvantage in the use of metallic biomaterials as they may induce multiple tissue reactions, such as osteolysis, damage the normal structure of the bone, severe reaction of macrophages, granuloma, fibrous capsule, inflammatory and immune reactions. All this can lead to implant destabilization and loosening.
This paper summarizes the physical-mechanical and technological characteristics of a new titanium-based alloy having high biocompatibility due to the chemical composition. The alloy is composed of 10% zirconium designed to improve fatigue strength in corrosive environment and does not contain harmful elements present in conventional titanium-based alloys composition.

Creative Commons License

References

[1]. Kenneth J., D.M.D. Anusavice, Phillips’ Science of Dental Materials, Tenth Edition, 1996.
[2]. Park J. B., et al., Biomaterials, Principles and Applications, MA: CRC Press, 2003.
[3]. Craig R. G., Materiale dentare restaurative, Ed. All Educational, Bucuresti, p. 22, 2001.
[4]. Vasilescu E., Research on the Behaviour of the Tooth- Crowns Assembly Made of Different Materials in Solutions simulating the Oral Environment, The Annals of "Dunarea de Jos" University of Galati Fascicle lX. Metallurgy and Materials Science, no. 3, p. 27, 2015.
[5]. Vasilescu V. G., Contribuţii la studiul materialelor metalice biocompatibile utilizate în implantologia orală, Teză de doctorat susţinută la U.M.F. “Carol Davila“ Bucureşti, 2016.
[6]. Anderson J. M., et al., Host reactions to biomaterials and their evaluation, Ratner B. D., et al., eds. Biomaterials Science: An Introduction to Materials in Medicine London, Elsevier, 2004.
[7]. Khan M. A., Williams R. L., Williams D. F., In vitro corrosion and wear of titanium alloys in the biological environment, Biomaterials, 17, p. 2117, 1996.
[8]. Patrascu I., Vasilescu E., Gatin E., Cara-Ilici R. R., Corrosion of Biomaterials Used in Dental Reconstruction Dentistry, Chapter 26, 2014.
[9]. Patrascu I., Vasilescu V. G., Milicescu St., Modern methods for assessing the corrosion resistance of dental alloys used in dentistry, Chapter 9, 2014.
[10]. Gadea S., Petrescu M., Metalurgie fizica si studiul metalelor, vol. 3, EDP Bucuresti, 1983.
[11]. Ghiban B., Metallic Biomaterials, Editura Printech, Bucuresti, 1999.
[12]. Fleck C., Eifler D., Corrosion, fatigue and corrosion fatigue behaviour of., metal implant materials, especially titanium alloys, International Journal of Fatigue, 32, p. 929-935, 2010.
[13]. Montes C. C., Pereira F. A., Thome G., Alves E. D. M., Acedo R. V., Renato de Souza J., Moreira Melo A. C., Trevilatto P. C., Osseointegrated Dental Implant Loss., Implant Dentistry, vol. 16, no. 4, 2007.
[14]. Hadi S. A., Ashfaq N., Bey A., Khan S., Biological factors responsible failure of osseointegration in oral implants, Biology and Medicine, 3 (2), Special Issue, p. 164-170, 2011.
[15]. Rack H. J., Qazi J. I., Titanium alloys for biomedical applications, Materials Science and Engineering C 26 Elsevier, p. 1269-1277, 2006.
[16]. Imam M. A., Fraker A. C., Titanium alloys as implant materials, In: Brown SA, American Society for Testing and Materials, p. 3-16, 1996.
[17]. Vlad Gabriel Vasilescu, Elisabeta Vasilescu, Consideraţii asupra compoziţiei aliajelor cu baza titan utilizate in implantologia orala, Congresul National GALMED, Editia a-V-a, 13-16 noiembrie 2014 Galati Romania (volum de abstracte/prezentare poster).
[18]. Moranta C., Lopez M. F., Gutierrez A., Jimenez J. A., AFM and SEM Characterization of non-toxic vanadium-free Ti alloys used as biomaterials, Applied Surface Science 220 Elsevier, p. 79-87, 2003.
[19]. Okazaki Y., Gotoh E., Comparison of metal release from various metallic biomaterials in vitro, Biomaterials, 26, 11, 2005.
[20]. Khan M., Williams R., Williams D., The corrosion behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions, Biomaterials, 20 (7), p. 631-637, 1999.
[21]. Drăgan (Raileanu) L. A., Petreus T., Tudoran L. B., Munteanu C., Mareci D., Cotrutz C. E., Chelariu R., Cytocompatibility evaluation of two new Ti-Nb-Zr-Al alloys for medical applications, Elsevier Editorial System(tm) for Materials Science and Engineering C.
[22]. Campos M. I., Godoy dos Santos, Leme M. S., Trevilatto P. C., Interleukin-2 and Interleukin-6 gene promoter polymorphisms, and early failure of dental implants, Implant Dentistry, vol. 14(4), p. 391-398, 2005.
[23]. Vasilescu V. G., Patrascu I., Cotruț C., Vasilescu E., Experimental Research on the Behavior of the Alloy Ti10Zr in Simulated Oral Environment, Rev. Chim. (Bucharest), no. 2, p. 263, 2016.
[24]. Dima O., Alexandru P., Gurău G., Vlad Gabriel Vasilescu, Elisabeta Vasilescu, Studies and Research on Treatment of Titanium Alloys, UgalMat 2014, Galati, The Annals of “Dunarea de Jos” University of Galati. Fascicle IX. Metallurgy and Materials Science no. 1, 2014.
[25]. Vasilescu Vlad Gabriel, Patrascu Ion., Vasilescu Elisabeta, Studies and Research Regarding the Influence of Metallurgical Processing on the Structure and Properties of some Titanium Based Alloys Used in Dentistry, The VIth Edition of International Conference UgalMat 2014, Advanced Technologies and Material Section, May 29-31, Dunărea de Jos” University of Galati, Romania, 2014.
[26]. Vlad Gabriel Vasilescu, Elisabeta Vasilescu, Aliaj Ti-Zr utilizat in implantologia orala, Congresul National cu participare internationala pentru studenti si tineri medici rezidenti, GALMED Editia a V-a, 13-16 noiembrie 2014, Galati, Romania (volum de abstracte/prezentare poster).
Published
2016-09-15
How to Cite
1.
VASILESCU VG, VASILESCU E. Physical-Mechanical and Technological Characteristics of Ti10Zr Alloy for Dental Applications. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Sep.2016 [cited 18Apr.2024];39(3):19-6. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/1232
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.