A Review on the Thermophysical Properties of Water-Based Nanofluids and their Hybrids

  • Alina Adriana MINEA “Gheorghe Asachi” Technical University of Iasi
Keywords: hybrid nanofluid, thermal conductivity, Nusselt number, oxide nanoparticles, viscosity

Abstract

A nanofluid is a solid–liquid mixture which consists of nanoparticles and a base liquid. Nanoparticles are basically metal (Cu, Ni, Al, etc.), oxides (Al2O3, TiO2, CuO, SiO2, Fe2O3, Fe3O4, BaTiO3, etc.) and some other compounds (SiC, CaCO3, graphene, etc.) and base fluids usually include water, ethylene glycol, propylene glycol, engine oil, etc. Conventional fluids have poor heat transfer properties but their vast applications in power generation, chemical processes, heating and cooling processes, electronics and other micro-sized applications make the re-processing of those thermo fluids to have better heat transfer properties quite essential. Recently, it has been shown that the addition of solid nanoparticles to various fluids can increase the thermal conductivity and can influence the viscosity of the suspensions by tens of percent. The thermophysical properties of nanofluids were shown dependent on the particle material, shape, size, concentration, the type of the base fluid, and other additives. Therefore, a comprehensive analysis has been performed to evaluate the thermophysical properties of nanofluids due to variations of nanoparticle volume concentration. Actually, it is shown that no model is able to predict the thermophysical properties of nanofluids precisely in a broad range of nanoparticle volume fraction. Also, a review on hybrid nanofluids is inserted, even if the research is at the very beginning. As a conclusion, the results indicated that further work is needed due to a large uncertainty in termophysical properties method of estimation.

Creative Commons License

References

[1]. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D. A. Siginer, H. P. Wang (Eds.), Developments Applications of Non-Newtonian Flows, FED, vol. 231/MD, vol. 66, ASME, New York, 1995, p. 99-105.
[2]. M. Chandrasekar, S. Suresh, A. Chandra Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Therm. Fluid Sci., 34 (2), p. 210-216, 2010.
[3]. C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H. Anguemintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon, Int. J. Heat Fluid Flow, 28 (6), p. 1492-1506, 2007.
[4]. M. Kole, T. K. Dey, Viscosity of alumina nanoparticles dispersed in car engine coolant, Exp. Therm. Fluid Sci., 34 (6), p. 677-683, 2010.
[5]. S. Lee, S. U. S. Choi, S. Li, J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, p. 280-289, 1999.
[6]. R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two component system, I EC Fund., 1, p. 187-191, 1962.
[7]. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78 (6), p. 718-720, 2001.
[8]. S. K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement of nanofluids, J. Heat Transfer, 125, p. 567-574, 2003.
[9]. B. X. Wang, L. P. Zhou, X. F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, p. 2665-2672, 2003.
[10]. J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanoparticle Res., 6, p. 577-588, 2004.
[11]. J. Koo, C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transfer, 48, p. 2652-2661, 2005.
[12]. H. Chen, Y. Ding, Y. He, C. Tan, Rheological behaviour of ethylene glycol based titania nanofluids, Chem. Phys. Lett., 444 (4-6), p. 333-337, 2007.
[13]. H. Chen, Y. Ding, C. Tan, Rheological behaviour of nanofluids, New J. Phys., 9 (10), p. 267, 2007.
[14]. Chen W. Yang, Y. He, Y. Ding, L. Zhang, C. Tan, A. A. Lapkin, D. V. Bavykin, Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids), Powder Technol., 183 (1), p. 63-72, 2008.
[15]. H. Chen, Y. Ding, A. Lapkin, X. Fan, Rheological behaviour of ethylene glycoltitanate nanotube nanofluids, J. Nanopart. Res., 11 (6), p. 1513-1520, 2009.
[16]. H. Chen, S. Witharana, Y. Jin, C. Kim, Y. Ding, Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology, Particuology, 7 (2), p. 151-157, 2009.
[17]. T. X. Phuoc, M. Massoudi, R. H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Therm. Sci., 50 (1), p. 12-18, 2011.
[18]. P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, D. A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Heat Mass Transfer, 52 (21-22), p. 5090-5101, 2009.
[19]. D. P. Kulkarni, D. K. Das, R. S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Appl. Energy, 86 (12), p. 2566-2573, 2009.
[20]. A. Turgut, I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter, S. Tavman, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids, Int. J. Thermophys., 30 (4), p. 1213-1226, 2009.
[21]. M. T. Naik, G. R. Janardhana, K. V. K. Reddy, B. S. Reddy, Experimental investigation into rheological property of copper oxide nanoparticles suspended in propylene glycol- water based fluids, ARPN J. Eng. Appl. Sci., 5 (6), p. 29-34, 2010.
[22]. Maxwell C. A. Treatise on electricity and magnetism. Oxford, UK: Clarendon Press, 1881.
[23]. Bruggeman D. A. G., Berechnung verschied enerphysikalischerkonstantenvon heterogenen substanzen, IDielektrizitatskonstanten undleitfahigkeiten der mischkorperausisotropen substanzen. Annalender Physik, Leipzig, 24, p. 636-679, 1935.
[24]. Wasp F. J., Solid–liquid slurry pipeline transportation. Transactionson Techniques, Berlin, 1977.
[25]. Davis R. H., The effective thermal conductivity of a composite material with spherical inclusions, International Journal of Thermophysics, 7, p. 609-620, 1986.
[26]. Lu S., Lin H., Effective conductivity of composites containing aligned spherical inclusions of finite conductivity, Journal of Applied Physics, 79, p. 6761-6769, 1996.
[27]. Bhattacharya P., Saha S. K., Yadav A., Phelan P. E., Prasher R. S., Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, Journal Applied Physics, 95 (11), p. 6492-6494, 2004.
[28]. Xue Q. Z., Model for thermal conductivity of carbon nanotube-based composites, Physica B: Condensed Matter, 368 (1-4), p. 302-307, 2005.
[29]. Li C. H., Peterson G. P., Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99 (8), 084314, 2006.
[30]. Buongiorno J., Convective transport in nanofluids, Journal of Heat Transfer, 128, p. 240-250, 2006.
[31]. Timofeeva E. V., Gavrilov A. N., McCloskey J. M., Tolmachev Y. V., Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Physical Review, 76, 061203, 2007.
[32]. Avsec J., Oblak M., The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics, International Journal of Heat and Mass Transfer, 50 (19), p. 4331-4341, 2007.
[33]. Chandrsekar M., Suresh S., Srinivasan R., Chandra Bose A., New analyatical models to investigate thermal conductivity of nanofluids, Journal of Nanoscience and Nanotechnology, p. 533-538. 2009.
[34]. Duangthongsuk W., Wongwises S., Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Experimental Thermal and Fluid Science, 33(4), p. 706-714, 2009.
[35]. Patel H. E., Sundararajan T., Das S. K., An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids, Journal of Nanoparticle Research, 12, p. 1015-1031, 2010.
[36]. Vajjha R. S., Das D. K., Namburu P. K., Numerical study offluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, International Journal of Heat and Fluid Flow, 31, p. 613-621, 2010.
[37]. Corcione M., Rayleigh–Bernard convection heat transfer in nanoparticle suspensions, International Journal of Heat and Fluid Flow, 32, p. 65-77, 2011.
[38]. Einstein A., Eine neue best immung der molekul dimensionen, Annalen der Physik, Leipzig, 19, p. 289-306, 1906.
[39]. Saito N., Concentration dependence of the viscosity of high polymer solutions, Journal of the Physical Society of Japan, 5, p. 4-8, 1950.
[40]. Brinkman H. C., The viscosity of concentrated suspensions and solution, Journal of Chemical Physics, 20, p. 571-581, 1952.
[41]. Lundgren T., Slow flow through stationary random bed sand suspensions of spheres, Journal of Fluid Mechanics, 51, p. 273-99, 1972.
[42]. Batchelor G. K., The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics, 83 (1), p. 97-117, 1977.
[43]. Wang X., Xu X., Choi S. U. S., Thermal conductivity of nanoparticles - fluid mixture, Journal of Thermophysics and Heat Transfer, 13 (4), p. 474-480, 1999.
[44]. Tseng W., Lin K. C., Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Material Science Engineering, A, 355, p. 186-192, 2003.
[45]. Maiga S., Palm S. J., Nguyen C. T., Roy G., Galanis N., Heat transfer enhancement by using nanofluids in forced convection flows, International Journal of Heat and Fluid Flow, 26, p. 530-546, 2005.
[46]. Koo J., Kleinstreuer C., Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids, International Communicationsin Heat and Mass Transfer, 3, 2 (9), p. 1111-1118, 2005.
[47]. Kulkarni D. P., Das D. K., Chukwu G., Temperature dependent rheological property of copper oxide nanoparticles suspension (Nanofluid), Journal of Nanoscience and Nanotechnology, 6, p. 1150-1154, 2006.
[48]. Namburu P. K., Kulkarni D. P., Misra D., Das D. K., Viscosity of copperoxide nanoparticles dispersed in ethyleneglycol and water mixture, Experimental Thermal and Fluid Science, 32, p. 67-71, 2007.
[49]. Ho C. J., Huang J. B., Tsai P. S., Yang Y. M., Preparation and properties of hybrid water- based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid, Int Commun Heat Mass Transf, 37, p. 490-494, 2010.
[50]. Suresh S., Venkitaraj K. P., Selvakumar P., Chandrasekar M., Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermophysical properties, Colloids Surf A: Physicochem Eng. Asp., 388, p. 41-48, 2011.
[51]. Botha S. S., Ndungu P., Bladergroen B. J., Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica, Ind. Eng. Chem. Res., 50, p. 3071-3077, 2011.
[52]. Baghbanzadeh M., Rashidi A., Soleimanisalim A. H., Rashtchian D., Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT, Thermochim Acta, 578, p. 53-58, 2014.
[53]. Paul G., Philip J., Raj B., Das P. K., Manna I., Synthesis, characterization, and thermal property measurement of nanoAl95ZnO5 dispersed nanofluid prepared by a two-step process, Int J Heat Mass Transf, 54, p. 3783-3788, 2011.
[54]. Baghbanzadeha M., Rashidib A., Rashtchiana D., Lotfib R., Amrollahib A., Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids, Thermochim Acta, 549, p. 87-94, 2012.
[55]. Abbasi S. M., Nemati A., Rashidi A., Arzani K., The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina, Ceram. Int., 39 (4), p. 3885-3891, 2013.
[56]. Nine M. J., Batmunkh M., Kim J. H., Chung H. S., Jeong H. M., Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization, J Nanosci Nanotechnol, 12, p. 4553-4559, 2012.
[57]. Munkhbayar B., Tanshen M. R., Jeoun J., Chung H., Jeong H., Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics, Ceram. Int., 39 (6), p. 6415-6425, 2013.
[58]. Aravind S. S. J., Ramaprabhu S., Graphene wrapped multiwalled carbon nano-tubes dispersed nanofluids for heat transfer applications, J. Appl. Phys., 112, 124304, 2012.
[59]. Aravind S. S. J., Ramaprabhu S., Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation, RSCA dv, 3, 4199-4206, 2013.
[60]. Chen L. F., Cheng M., Yang D. J., Yang L., Enhanced thermal conductivity of nanofluid by synergistic effect of multiwalled carbon nanotubes and Fe2O3 nanoparticles, Appl. Mech. Mater., 548-549, p. 118-123, 2014.
[61]. Batmunkh M., Tanshen M. R., Nine M. J., Myekhlai M., Choi H., Chung H., Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle, Ind. Eng. Chem. Res., 53 (20), p. 8445-8451, 2014.
Published
2016-03-15
How to Cite
1.
MINEA AA. A Review on the Thermophysical Properties of Water-Based Nanofluids and their Hybrids. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2016 [cited 27Apr.2024];39(1):35-7. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/1279
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.