ZnO Nanoparticles: Green Synthesis, Properties and Applications

  • Mariana BUŞILĂ "Dunarea de Jos" University of Galati, Romania
Keywords: ZnO nanoparticles, green synthesis, eco-friendly, antibacterial activity

Abstract

In this paper, a review, there are presented “Green” routes used in the synthesis of ZnO nanoparticles because they are more eco-friendly alternatives in comparison with chemical and/or physical techniques. Microorganisms, bacteria, enzymes and plant extracts also allow a controlled synthesis and function as stabilizing or hydrolytic agents. The chemical solvents are toxic, and these methods suffer various disadvantages due to the involvement of high temperature and pressure conditions during nanoparticle synthesis.
The ZnO nanoparticles are of significant interest as they provide many practical applications in various fields: drugs, cosmetics, textile, electronic and optoelectronic, photocatalysis. The most important application of ZnO nanoparticles would be as antibacterial agents. The increased surface area and smaller size of these particles make them an ideal antibacterial agent.
In addition to the green synthesis of ZnO nanoparticles along with their antimicrobial activity the mechanism of this activity was also reviewed. The green synthesis of ZnO nanoparticles from Azadirachta indica, Aloe vera, Murraya koenigii and Anisochilus carnosus were also highlighted.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Moritz M., Moritz M. G., Chem. Eng. J., 228, p. 596-613, 2013.
[2]. Rajiv P., Rajeshwari S., Venckatesh R., Spectrochim. Acta A, 112, p. 384-387, 2013.
[3]. Caruthers S. D., Wickline S. A., Lanza G. M., Curr. Opin. Biotechnol., 18, p. 26-30, 2007.
[4]. Nath D., Banerjee P., Environ. Toxicol. Pharmacol, 36, p. 997-1014, 2013.
[5]. Salam H. A., Rajiv P., Kamaraj M., Jagadeeswaran P., Gunalan S., Sivaraj R., Int. Res. J. Biol. Sci., 1, p. 85-90, 2012.
[6]. Rajiv P., Rajeshwari S., Venckatesh R., Spectrochim. Acta A, 112, p. 384-387, 2013.
[7]. Dijiken A. V., Meulenkamp E. A., Vanmaekelbergh D., Meijerink A., J. Lumin, 90, p. 123-128, 2000.
[8]. Singhal G., Riju B., Ashish R. S., Rajendra P. S., Adv. Sci. Eng. Med., 4, p. 62-66, 2012.
[9]. Mason C., Vivekanandhan S., Misra M., Mohanty A. K., World J. Nano Sci. Eng., 2, p. 47-52, 2012.
[10]. Chandran S. P., Chaudhary M., Pasricha R., Ahmad A., Sastry M., Biotechnol. Prog., 22, p. 577-583, 2000.
[11]. Shankar S. S., Rai A., Ahmad A., Sastry M., J. Colloid Interface Sci., 275, p. 496-502, 2004.
[12]. Huang J., Li Q., Sun D., Lu Y., Su Y., Yang X., et al., Nanotechnology, 18, p. 105-104, 2007.
[13]. Jamdagni P., Khatri P., Rana J. S., Int. Nano Lett., 6, p. 139-146, 2016.
[14]. Syed M. A., Biosens. Bioelectron., 51, p. 391-400, 2014.
[15]. Bobo D., Robinson K. J., Islam J., Thurecht K. J., Corrie S. R., Pharm. Res., 33 (10), p. 2373-2387, 2016.
[16]. Chen G., Roy I., Yang C., Prasad P. N., Chem. Rev., 116, p. 2826-2885, 2016.
[17]. Ahmed S., Ahmad M., Swami B. L., Ikram S., J. Adv. Res., 7 (1), p. 17-28, 2016.
[18]. Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. C., Bakhori S. K. M., Hasan H., Mohamad D., Nano-Micro Lett., 7, p. 219-242, 2015.
[19]. Diallo A., Mothudi B. M., Manikandan E., Maaza M., J. Nanophotonics, 10, p. 26010, 2016a.
[20]. Diallo A., Manikandan E., Rajendran V., Maaza M., J. Alloys Compd., 681, p. 561-570, 2016b.
[21]. Sone B. T., Manikandan E., Gurib-Fakim A., Maaza M., J. Alloys Compd., 650, p. 357-362, 2015.
[22]. Thovhogi N., Park E., Manikandan E., Maaza M., GuribFakim A., J. Alloys Compd., 655, p. 314-320, 2016.
[23]. Eslami A., Amini M. M., Yazdanbakhsh A. R., MohseniBandpei A., Safari A. A., Asadi A. N., J. Chem. Technol. Biotechnol., 91, p. 2693-2704, 2016.
[24]. Thema F. T., Manikandan E., Gurib-Fakim A., Maaza M., J. Alloys Compd., 657, p. 655-661, 2016.
[25]. Mohammad V., Umar A., Hahn Y. B., American Scientific Publishers, USA, p. 1-36, 2010.
[26]. Rosi N. L., Mirkin C. A., Chem. Rev., 105 (4), p. 1547-1562, 2005.
[27]. Husen A., Siddiqi K. S., J. Nanobiotechnol., 12, p. 28, 2014a.
[28]. Husen A., Siddiqi K. S., Nanoscale Res. Lett., 9, p. 229, 2014b.
[29]. Jeevanandam J., Chan Y. S., Danquah M. K., ChemBioEng Rev., 3, p. 55-67, 2016.
[30]. Shanker U., Jassal V., Rani M., Kaith B. S., In . J. Environ. Anal. Chem., 96 (9), p. 801-835, 2016.
[31]. Singh P., Kim Y. J., Zhang D., Yang D. C., Trends Biotechnol., 34 (7), p. 588-599, 2016.
[32]. Espitia P. J. P., Soares N. F. F., Coimbra J. S. R., De Andrade N. J., Cruz R. S., Medeiros E. A. A., Food Bioprocess Technol., 5, p. 1447-1464, 2012.
[33]. Franklin N. M., Rogers N. J., Apte S. C., Batley G. E., Gadd G. E., Casey P. S., Environ. Sci. Technol., 41 (24), p. 8484-8490, 2007.
[34]. Li Q., Mahendra S., Lyon D. Y., Brunet L., Liga M. V., Li D., Alvarez P. J., Water Res., 42 (18), p. 4591-4602, 2008.
[35]. Azam A., Ahmed A. S., Oves M., Khan M. S., Habib S. S., Memic A., Int. J. Nanomed., 7, p. 6003-6009, 2011.
[36]. Jime´nez A. B. P., Aguilar C. A. H., Ramos J. M. V., Thangarasu P., Aust. J. Chem., 68, p. 288-297, 2015.
[37]. Shah A. H., Manikandan E., Basheer Ahamed M., Ahmad Mir D., Ahmad Mir S., J. Lumin., 145, p. 944-950, 2014.
[38]. Buzea C., Pacheco I. I., Robbie K., Biointerphases, 2, p. MR17-MR71, 2007.
[39]. Padmavathy N., Vijayaraghavan R., Sci. Technol. Adv. Mat., 9, p. 1-7, 2008.
[40]. Gertrude Neumark Y. G., Kuskovsky I., in Springer Handbook of Electronic and Photonic Materials, ed. by P.C. Safa Kasap Springer, p. 843-854, 2007.
[41]. Wang Z. L., J. Phys.: Condens. Matter., 16 (25), p. R829-R858, 2004.
[42]. Wang Z. L., Song J., Science, 312 (5771), p. 242-246, 2006.
[43]. Janotti A., Van de Walle C. G., Rep. Prog. Phys., 72 (12), p. 126501, 2009.
[44]. Zhang Y., Ram M. K., Stefanakos E. K., J. Nanomater., p. 1-22, 2012.
[45]. Schmidt-Mende L., MacManus-Driscoll J. L., Mater. Today, 10 (5), p. 40-48, 2007.
[46]. Wellings J., Chaure N., Heavens S., Dharmadasa I., Thin Solid Films, 516 (12), p. 3893-3898, 2008.
[47]. Amna Sirelkhatim, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann, Siti Khadijah Mohd Bakhori, Habsah Hasan, Dasmawati Mohamad, Nanomicro Lett., 7 (3), p. 219-242, 2015.
[48]. Colon G., Ward B. C., Webster T. J., Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2, J. Biomed. Mater. Res., 78 (3), p. 595-604, 2006.
[49]. Zhang L., Jiang Y., Ding Y., Povey M., York D., J. Nanoparticle Res., 9, p. 479-489, 2007.
[50]. Srinivasa B. Reddy, Krishna V., Veni K., Ravindhranath K., J. Chem. Pharm. Res., p. 4682-4694, 2012.
[51]. Seshadri R., Rao C. N. R., Muller A., Cheetham A. K., Wiley-VCH Verlag GmbH, Weinheim, vol. 1, p. 94-112, 2004.
[52]. Theodore L., Nanotechnology: Basic Calculations for Engineers and Scientists, Wiley, Hoboken, 2006.
[53]. Wang X., Lu J., Xu M., Xing B., Environmental Science and Technology, 42, p. 7267-7272, 2008.
[54]. Noorjahan C. M., Jasmine Shahina S. K., Deepika T., Summera Rafiq. International Journal of Scientific Engineering and Technology Research, 04 (30), p. 5751-5753, 2015.
[55]. Sangeethaa G., Rajeshwaria S., Venckateshb R., Materials Research Bulletin, 46, p. 2560-2566, 2011.
[56]. Khan B. A., Abraham A., Leelamma S., Indian J. Bio Chem. Biophys, 32, p. 106-108, 1995.
[57]. Das K. C., Chakraborty D. P., Bose P. K., J. Spreng, Experientia, 21, p. 340-345, 1965.
[58]. Khan B. A., Abraham A., Leelamma S., Investig. New Drugs, 14, p. 365-369, 1996.
[59]. Roy N., Alam M. N., Mondal S., Sk I., Laskar R. A., Das S., Mandal D., Begum N. A., Process Biochem, 47 (9), p. 1371-1380, 2012.
[60]. Roy N., Mondal S., Laskar R. A., Basu S., Mandal D., Begum N. A., Biog. Colloids Surf. B, 76 (1), p. 317-325, 2010.
[61]. Alam M. N., Das S., Batuta S., Roy N., Chatterjee A., Mandal D., Begum N. A., ACS Sustain. Chem. Eng., 2, p. 652-664, 2014.
[62]. Elumalai K., Velmurugan S., Applied Surface Science, 345, p. 329-336, 2015.
[63]. Yamamoto O., Int. J. Inorgan. Mater, 3, p. 643-646, 2001.
[64]. Makhluf S., Dror R., Nitzan Y., Adv. Func. Mater., 15, p. 1708-1715, 2005.
[65]. Mariam M. Kashif A. A., Arokiyaraj S., Bououdina M., Sankaracharyulu M. G. V., Jayachandran M., Hashim U., Digest Journal of Nanomaterials and Biostructures, 9 (3), p. 1007-1019, 2014.
[66]. Anbuvannan M., Ramesh M., Viruthagiri G., Shanmugam N., Kannadasan N., Spectrochim Acta A Mol Biomol Spectrosc., 143, p. 304-308, 2015.
Published
2018-09-15
How to Cite
1.
BUŞILĂ M. ZnO Nanoparticles: Green Synthesis, Properties and Applications. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Sep.2018 [cited 23Sep.2021];41(3):25-9. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/1756
Section
Articles