Review on the Elaboration and Morfo-Structural Characterization of Iron Oxide for Catalytic Applications
Abstract
Magnetite, Fe3O4 exhibits the strongest magnetism of transition metal oxides. Hematite, α-Fe2O3 being the most stable oxide and semiconductor type n under environmental conditions, can be widely used in catalysts, pigments and gas sensors. Iron oxide nanoparticles (Fe3O4 and γ-Fe2O3) with superparamagnetic properties and low toxicity, are particularly useful for catalytic applications especially in the medical field. For these applications, the Fe3O4 and γ-Fe2O3 nanoparticles are usually smaller than 20 nm, where they have superparamagnetic properties, i.e. a high magnetic saturation moment and almost zero coercivity. This review presents the theoretical concepts of the structure properties of this oxide and the elaboration methods that make iron oxide the ideal candidate for catalytic applications.
Downloads
References
[2]. Babay S., Mhiri T., Toumi M., J Mol Struct, 1085, p. 286-293, 2015.
[3]. Machala L., Tucek J., Zboril R., Chem Mater, 23, (14), p. 3255-3272, 2011.
[4]. Zhang Z., Boxall C., Kelsall G. H., Colloids Surf., A 73, 145, 1993.
[5]. Wu W., Xiao X. H., Zhang S. F., Zhou J. A., Fan L. X., Ren F., Jiang C. Z., J. Phys. Chem. C, 114, 16092, 2010.
[6]. Teja S. A., Koh P. Y., Prog Cryst Growth Charact Mater, 55, p. 22-45, 2009.
[7]. Boxall C., Kelsall G., Zhang Z., J. Chem. Soc. Faraday Trans, 92, 79, 1996.
[8]. Wei Wu., Zhaohui Wu., Taekyung C. J., Woo S. K., Sci Technol Adv Mat, 16, 43, 2015.
[9]. Cullity B. D., AddisonWesley: Reading, MA., p. 9-80, 1972.
[10]. Salata O. V., J Nanobiotechnology, 2, 3, 2004.
[11]a. Jiang J. Z, Lin R., Lin W., Nielsen K., Mørup S., Dam Johansen K., Clasen R., J. Phys, 30, 1459, 1997.
[11]b. Sun H. T., Cantalini C., Faccico M., Peline M., J. Am. Ceram. Soc., 79, 927, 1996.
[11]c. Matijevic E., Scheiner P. J., Colloid Interface Sci., 63, 509, 1978.
[11]d. Ozaki M., Kratohvil S., Matijevic B., J. Colloid Interface Sci., 102, 146, 1984.
[12]a. Benz M., van der Kraan A. M., Prins. R, J. Appl. Catal. A., 172, 149, 1998.
[12]b. Anantharaman M. R., Joseph K. V., Keer H. V., Bull, Mater. Sci., 20, 975, 1997.
[12]c. Kryder M. H., MRS Bull 21, 17, 1996.
[12]d. Onodera S., Kondo H., Kawana T., MRS Bull, 21, 35, 1996.
[12]e. Watanabe H., Seto J., Bull. Chem. Soc. Jpn 61, 2411, 1991.
[12]f. Hong F. B., Yang L., Schwartz L. H., Kung H. H., J. Phys. Chem., 88, 2525, 1984.
[13]a. Lubbe A. S., Bergemann C., Brock F., McClure D. G., J. Magn. Magn. Mater, 194, 149, 1999.
[13]b. Popplewell J., Sakhnini L., J. Magn. Magn. Mater, 149,72, 1995.
[13]c. Pouliquen D., Perroud H., Calza F., Jallet P., Lejeune. J. Magn. Reson. Med., 24, 75, 1992.
[13]d. Lisiecki I., Billoudet F., Pileni M. P., J. Phys. Chem, 100, 4160, 1996.
[14]. Hibst H., Schwab E., Cahn R. W., VCH, Weinheim, 3B, 352, 1993.
[15]. Azhar Uddin M., Tsuda H., Wu S., E. Sasaoka 87, 451-459, 2008.
[16]. Li C., Shen Y., Jia M., Sheng S., Adebajo M. O., Zhu H., 9, 355-361, 2008.
[17]. Shi F., Tse M. K., Pohl M. M., Bruckner A., Zhang S. M., Beller M., Angewandte Chemie International Edition, 46, 8866-8868, 2007.
[18]. Bautista F. M., Campelo J. M., Luna D., Marinas J. M., Quiros R. A., Romero A. A., Applied Catalysis B: Environmental, 70, p. 611-620, 2007.
[19]. Frank J. Owens, Charles P. Poole Jr., The Physics and Chemistry of Nanosolids, p. 1-40, 2009.
[20]. Wu W., He Q., Jiang C., Nanoscale Res Lett., 3:397, 2008.
[21]. ***, Nanocrystals. Nat Mater., 3:891, 2004.
[22]. Zhou Z., Zhu X., Wu Park J., An K., Hwang Y., Park J.-G., Noh H.-J., Kim J.-Y. et al., Chem. Mater., 27, p. 3505-3515, 2015.
[23]. Roh Y., Vali H., Phelps T. J., Moon J. W., J Nanosci Nanotechnol, 6, p. 3517-3520, 2006.
[24]. Bharde A. A., Parikh R. Y., Baidakova M., Jouen S., Hannoyer B., Enoki T., et al., Langmuir, 24, p. 5787-5794, 2008.
[25]. Aftabtalab A., Sadabadi H., Chakra C. S., Rao K. V., Sarah Shaker, Mahofa E. P., IJSER, 5, p. 1419-1423, 2014.
[26]. Massart R., 17, p. 1247-1248, 1981.
[27]. Laurent S., Forge D., Port M. Rev. Chem. Eng., 108, p. 2064-2110, 2008.
[28]. Sun S., Zeng H., J Am Chem Soc. 124, p. 8204-8205, 2002.
[29]. Kang Y. S., Risbud S., Rabolt J. F., Stroeve P. Chem., 8, p. 2209-2211, 1996.
[30]. Ahn T., Kim J. H., Yang H.-M., Lee J. W., Kim J.-D., J. Phys. Chem. C., 116, p. 6069-6076, 2012.
[31]. Lenders J. J. M., Altan C. L., Bomans P. H. H., Arakaki A., Bucak S., de With G. Sommerdijk, N.A.J.M., 14, p. 5561-5568, 2014.
[32]. Abdelmajid L., Brahim D., Abdellatif G., Salah A., Results in Physics, 7, p. 3007-3015, 2017.
[33]. Khalil M. I., Arab J. Chem., 8, p. 279-284, 2015.
[32]. Rockenberger J., Scher E. C., Alivisatos A. P., J. Am. Chem. Soc., 121, p. 11595-11596, 1999.
[33]. Park J., An K., Hwang Y., Park J. G., Noh H. J., Kim J. Y., Park J. H., Nat. Mater., 3, p. 891-895, 2004.
[34]. Maity D., Choo S.-G., Yi J., Magn Magn Mater., 32, p. 1256-1259, 2009.
[35]. Yu W. W., Falkner J. C., Yavuz C. T., Colvin V. L., Chem. Commun, p. 2306-2307, 2004.
[36]. Sun S., Zeng H., J. Am. Chem. Soc., 124, 8204, 2000.
[37]. Cui H., Liu Y., Ren W., Adv. Powder Technol., 24, p. 93-97, 2013.
[38]. Bilecka I., Djerdj I., Niederberger M., Chem Commun., p. 886-888, 2008.
[39]. Vijayakumar R., Koltypin Y., Felner I., Gedanken A., Mater. Sci. Eng., 286, p. 101-105, 2000.
[40]. Amir Hassanjani-Roshana, Mohammad Reza Vaezi, Ali Shokuhfar, Zohreh Rajabali, Particuology, 9, p. 95-99, 2011.
[41]. Azadeh A., Mojtaba B., Morsali A., J Exp Nanosci, 6, p. 217-225, 2011.