Electrochemical Corrosion Behavior of 7075 Aluminum Alloy after Ageing Treatment

  • Roxana ŞTEFĂNICĂ "Gheorghe Asachi" Technical University of Iasi, Romania
  • Carmen NEJNERU "Gheorghe Asachi" Technical University of Iasi, Romania
  • Vasile MANOLE "Gheorghe Asachi" Technical University of Iasi, Romania
  • Ramona CIMPOEŞU HANU "Gheorghe Asachi" Technical University of Iasi, Romania
Keywords: electrochemical corrosion, aluminum alloy, artificial ageing

Abstract

The electrochemical corrosion behavior of 7075 aluminum alloy subjected to different artificial ageing treatments maintaining times was examined. This aluminum alloy is typically used in aerospace structural components such as the wing spars of aircrafts and maritime industry as different mechanic parts. Heat treatments applied on this kind of alloys influence considerably the material properties like corrosion resistance.
The specimens from the electrochemical corrosion point of view were investigated in aerated and recirculated seawater solution – source Mediterranean Sea. Using a scanning electron microscope the material surface was analyzed before and after electro-tests following the microstructure, modifications, pitting holes appearance and the effects of corrosion tracked through EDAX and VoltaMaster results analysis.

Creative Commons License

References

[1]. K.M. Gruenberg, B.A. Craig, B.M. Hillberry, R.J. Bucci, A.J. Hinkle - Predicting fatigue life of pre-corroded 2024-T3 aluminum, Intl. J. Fatigue 26 (2004) 629-640.
[2]. S. Kim, J.T. Burns, R.P. Gangloff - Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu, Eng. Fract. Mech. 76 (2009) 651-667.
[3]. K. Sharp, T. Mills, S. Russo, G. Clark, Q. Liu - Effects of exfoliation corrosion on the fatigue life of two high-strength aluminum alloys, Aging Aircraft 2000, FAA/DoD/NASA, 2001.
[4]. B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, D.G. Hay, W.J. Evans, G. Clark, A.J. Stonham - The EIFS distribution for anodized and pre-corroded 7010-T7651 under constant amplitude loading, Fatigue Fract. Eng. Mater. Struct. 28 (2005) 795-808.
[5]. R.P. Gangloff, J.T. Burns, S. Kim - Laboratory characterization and fracture mechanics modeling of corrosion–fatigue interaction for aluminum alloy substitution, Final Report, Contract F09650-03-D-0001, WPAFB, OH, 2005.
[6]. D.L. DuQuesnay, P.R. Underhill, H.J. Britt - Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading, Intl. J. Fatigue 25 (2003) 371-377.
[7]. E. McCafferty and P. Trzaskoma-Paulette - Dissolution and Protection of Aluminum Alloy 7075 in Hydroxide Solutions, Journal Corrosion Volume 53, Number 03, 1997, NACE International, Paper Number 97030179.
[8]. Carmen Nejneru, Nicanor Cimpoeşu, Sergiu Stanciu, Petrică Vizureanu, Andrei Victor Sandu - Sea water corrosion of a shape memory alloy type cuznal, Metalurgia Internaţional Editura Ştiinţifică F.M.R. vol. XIV, special issue nr. 7, 2009 p. 95-105.
[9]. Masatsugu Kamiya and Takao Yakou, Role of second-phase particles in chip breakability in aluminum alloys International Journal of Machine Tools and Manufacture, Volume 48, Issue 6, May 2008, p. 688-697.
[10]. Ming Gao, C.R. Feng and Robert P. Wei - An analytical electron microscopy study of constituent particles in commercial, Metallurgical and Materials Transactions A, Springer Boston Issue Volume 29, Number 4 / April, 1998, Pages 1145-1151, DOI 10.1007/s11661-998-0240-9.
[11]. Jacob L. Cartner, Warren O. Haggard, Joo L. Ong, Joel D. - Bumgardner Stress corrosion cracking of an aluminum alloy used in external fixation devices, Journal of Biomedical Materials Research Part B: Applied biomaterials, volume 86B, Issue 2, p.
430-437, Published Online.
[12]. Shi P, Mahadevan S. Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction. Eng Fract Mech 2001;68:1493-507.
[13]. Rokhlin SI, Kim J-Y, Nagy H, Zoofan B. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Eng Fract Mech 1999;62:425-44.
[14]. Duquette DJ, Corsetti LV. The effect of mean stress and environment on corrosion fatigue behaviour of 7075-T6 aluminum. Metall Trans 1974;5(May):1087-93.
[15]. Wan K-C, Chen GS, Gao M, Wei RP. Interactions between mechanical and environmental variables for short fatigue cracks in a 2024-T3 aluminum alloy in 0.5M NaCl solutions. Metall Mater Trans A 2000;31A(March):1025-34.
[16]. Jabubowski M. Fatigue, Crack propagation in austenitic stainless steel under low frequency loading and salt water conditions. Fatigue Fract Eng Mater Struct 1998;21:937-46.
[17]. Hasse I, Nocke K, Worche H, Zouhar G, Tempus G., An investigation of the fatigue behaviour of aluminum alloy AA 6013 T6 in a corrosive medium. Prakt Metallogr 2001;36(3).
[18]. R.M. Chlistovsky, P.J. Heffernan, D.L. DuQuesnay, Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads International Journal of Fatigue 29 (2007) 1941-1949.
[19]. Lin C-K, Yang S-T. Corrosion fatigue behaviour of 7050 aluminum alloys in different tempers. Eng Fract Mech 1998;59(6):779-95.
Published
2010-06-15
How to Cite
1.
ŞTEFĂNICĂ R, NEJNERU C, MANOLE V, CIMPOEŞU HANU R. Electrochemical Corrosion Behavior of 7075 Aluminum Alloy after Ageing Treatment. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2010 [cited 29Apr.2024];33(2):29-5. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/3003
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.