A molecular dynamics calculation to cascade damage processes

  • Hiwa Mohammad QADR University of Raparin, Sulaimanyah, Iraq
Keywords: displacement cascade, primary damage, Morse potential, molecular dynamics

Abstract

In this work, Molecular dynamics simulation was performed to study the cascade damage evaluation initial from a 250 eV Primary Knock-on Atoms (PKAs) in gold. For this purpose, the simulations were carried out using the molecular dynamics code  GRAPE to study the cooling phase of a cascade from the thermodynamic point view. Interatomic interaction of the cascade was investigated by the Morse potential and it is found that during the cooling phase of the cascade local equilibrium was realized.

Creative Commons License

References

[1]. Nordlund K., Zinkle S. J., Sand A. E., Granberg F., Averback R. S., Stoller R. E., et al., Primary radiation damage: A review of current understanding and models, Journal of Nuclear Materials, 512, p. 450-79, 2018.
[2]. Krasheninnikov A., Nordlund K., Ion and electron irradiation-induced effects in nanostructured materials, Journal of applied physics, 107 (7), p. 3, 2010.
[3]. Zwicknagel G., Molecular dynamics simulations of the dynamics of correlations and relaxation in an OCP, Contributions to Plasma Physics, 39 (1‐2), p. 155-8, 1999.
[4]. Heermann D. W., Computer-simulation methods. Computer Simulation Methods in Theoretical Physics, Springer, p. 8-12, 1990.
[5]. Gibson J., Goland A. N., Milgram M., Vineyard G., Dynamics of radiation damage, Physical Review, 120 (4), p. 1229, 1960.
[6]. Antoshchenkova E., Luneville L., Simeone D., Stoller R. E., Hayoun M., Fragmentation of displacement cascades into subcascades: A molecular dynamics study, Journal of Nuclear Materials, 458, p. 168-75, 2015.
[7]. Bacon D. J., de la Rubia T. D., Molecular dynamics computer simulations of displacement cascades in metals, Journal of Nuclear Materials, 216, p. 275-90, 1994.
[8]. Weber W. J., Zhang Y., Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations, Current Opinion in Solid State and Materials Science, 23 (4), p. 100757, 2019.
[9]. Stoller R. E., Toloczko M. B., Was G. S., Certain A. G., Dwaraknath S., Garner F. A., On the use of SRIM for computing radiation damage exposure, Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms, 310, p. 75-80, 2013.
[10]. Qadr H. M., Radiation damage and dpa in iron using mcnp5, European Journal of Materials Science and Engineering, 5 (3), p. 109-14, 2020.
[11]. Qadr H., Effect of Ion Irradiation on the Mechanical Properties of High and Low Copper, Atom Indonesia, 46 (1), p. 47-51, 2020.
[12]. Qadr H., Effect of ion irradiation on the hardness properties of Zirconium alloy, Annals of the University of Craiova, Physics, 29, p. 68-76, 2019.
[13]. Qadr H. M., Hamad A. M., Mechanical Properties of Ferritic Martenstic Steels: A Review, Scientific Bulletin of Valahia University-Materials and Mechanics, 17 (16), p. 18-27, 2019.
[14]. Hiwa M., Ari M., Investigation of long and short term irradiation hardening of P91 and P92 ferritic/martensitic steels, Вопросы атомной науки и техники Серия: Термоядерный синтез, 42 (2), p. 81-8, 2019.
[15]. Hiwa M., Stopping power of alpha particles in helium gas, Вестник Московского государственного технического университета им НЭ Баумана Серия «Естественные науки», 2(89), p. 117-25, 2020.
[16]. Arouche TdS., Cavaleiro R. MdS., Tanoue P. S. M., Pereira T. Sd. S., Neto A. Md. J. C., Heavy Metals Nanofiltration Using Nanotube and Electric Field by Molecular Dynamics, Journal of Nanomaterials, 2020.
[17]. Gaillac R., Pullumbi P., Bennett T. D., Coudert F.-X., Structure of Metal-Organic Framework Glasses by Ab Initio Molecular Dynamics, Chemistry of Materials, 2020.
[18]. Zheng F., Wang L.-W., Exploring non-adiabaticity to CO reduction reaction through ab initio molecular dynamics simulation, APL Materials, 8 (4), p. 041115, 2020.
[19]. Ohmura I., Morimoto G., Ohno Y., Hasegawa A., Taiji M., MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2021), p. 20130387, 2014.
[20]. Sheel T., Yasuoka K., Obi S., Fast vortex method calculation using a special-purpose computer, Computers & fluids, 36 (8), p. 1319-26, 2007.
[21]. Ackland G., Tichy G., Vitek V., Finnis M., Simple N-body potentials for the noble metals and nickel, Philos Mag A, 56 (6), p. 735-56, 1987.
[22]. Torrens I., Interatomic potentials, Elsevier, 2012.
Published
2020-12-15
How to Cite
1.
QADR HM. A molecular dynamics calculation to cascade damage processes. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2020 [cited 24Apr.2024];43(4):13-6. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/4031
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.