Trends on Reinforced Polymer Composites – A Review

  • Tamara APARECI (GÎRNEȚ) “Dunarea de Jos” University of Galati, Romania
  • Irina DĂNĂILĂ (ȚÎCĂU) “Dunarea de Jos” University of Galati, Romania
  • Iulian PĂDURARU “Dunarea de Jos” University of Galati, Romania
  • Adrian CÎRCIUMARU “Dunarea de Jos” University of Galati, Romania
  • Mihaela-Claudia GOROVEI “Dunarea de Jos” University of Galati, Romania
Keywords: polymer, fibres, composites

Abstract

In recent years, the interest in using fiber reinforced composites (FRC) has increased due to their potential to replace traditional materials in various applications. The advantages of polymer composites from natural fibres are: biodegradability, high performance, market availability and low price. This article is based on a review that discusses both polymer composite materials and typical applications by other authors on fiber reinforced composites (FRCs).

Creative Commons License

References

[1]. Madra A., Breitkopf P., Raghavan B., Trochu F., Diffuse manifold learning of the geometry of woven reinforcements in composites, Comptes Rendus Mécanique, vol. 346, no. 7, p. 532-538, doi: 10.1016/j.crme.2018.04.008, iul. 2018.
[2]. Nair R. G., Sundararajan T., Guruprasad P. J., A novel framework using point interpolation method with voxels for variational asymptotic method unit cell homogenization of woven composites, Composite Structures, vol. 202, p. 261-274, doi: 10.1016/j.compstruct.2018.01.072, oct. 2018.
[3]. Vassilopoulos A. P., The history of fiber-reinforced polymer composite laminate fatigue, International Journal of Fatigue, vol. 134, p. 105512, doi: 10.1016/j.ijfatigue.2020.105512, mai 2020.
[4]. Kazemi M., Fini E. H., State of the art in the application of functionalized waste polymers in the built environment, Resources, Conservation and Recycling, vol. 177, p. 105967, doi: 10.1016/j.resconrec.2021.105967, feb. 2022.
[5]. Das P., Banerjee S., Das N. C., Polymer-graphene composite in aerospace engineering, în Polymer Nanocomposites Containing Graphene, Elsevier, p. 683-711, doi: 10.1016/B978-0-12-821639-2.00001-X, 2022.
[6]. Pech-Pisté R., Cen-Puc M., Balam A., May-Pat A., Avilés F., Multifunctional sensing properties of polymer nanocomposites based on hybrid carbon nanostructures, Materials Today Communications, vol. 25, p. 101472, doi: 10.1016/j.mtcomm.2020.101472, dec. 2020.
[7]. Shakil U. A., Abu Hassan S. B., Yahya M. Y., Nurhadiyanto D., A review of properties and fabrication techniques of fiber reinforced polymer nanocomposites subjected to simulated accidental ballistic impact, Thin-Walled Structures, vol. 158, p. 107150, doi: 10.1016/j.tws.2020.107150, ian. 2021.
[8]. Huang T., Gong Y., A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects, Composite Structures, vol. 185, p. 401-410, doi: 10.1016/j.compstruct.2017.11.046, feb. 2018.
[9]. Karmazin A., Kirillova E., Seemann W., Syromyatnikov P., Investigation of Lamb elastic waves in anisotropic multilayered composites applying the Green’s matrix, Ultrasonics, vol. 51, no. 1, p. 17-28, doi: 10.1016/j.ultras.2010.05.003, ian. 2011.
[10]. Gupta P., Polymer-graphene composites as sensing materials, Polymer Nanocomposites Containing Graphene, Elsevier, p. 401-424, doi: 10.1016/B978-0-12-821639-2.00017-3, 2022.
[11]. Miah M. H., Chand D. S., Rahul B., Malhi G. S., Mechanical behavior of unsaturated polyester toughened epoxy hybrid polymer network reinforced with glass fibre, Materials Today: Proceedings, vol. 56, p. 669-674, doi: 10.1016/j.matpr.2022.01.069, 2022.
[12]. Yashas S. R., Shahmoradi B., Wantala K., Shivaraju H. P., Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances, Polymer, vol. 233, p. 124184, doi: 10.1016/j.polymer.2021.124184, oct. 2021.
[13]. Ganesh Gupta K. B. N. V. S., Hiremath M. M., Ray B. C., Prusty R. K., Improved mechanical responses of GFRP composites with epoxy-vinyl ester interpenetrating polymer network, Polymer Testing, vol. 93, p. 107008, doi: 10.1016/j.polymertesting.2020.107008, ian. 2021.
[14]. Wang W., Yu B., Zhang Y., Peng M., Fully aminated rigidrod aramid reinforced high strength epoxy resin and its composite with carbon fibers, Composites Science and Technology, vol. 221, p. 109324, doi: 10.1016/j.compscitech.2022.109324, apr. 2022.
[15]. Bachchan A. A., Das P. P., Chaudhary V., Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review, Materials Today: Proceedings, p. S2214785321019751, doi: 10.1016/j.matpr.2021.02.812, mar. 2021.
[16]. Zhou J., et al., Advanced functional Kevlar composite with excellent mechanical properties for thermal management and intelligent safeguarding, Chemical Engineering Journal, vol. 428, p. 131878, doi: 10.1016/j.cej.2021.131878, ian. 2022.
[17]. Wu Y., et al., Liquid or solid? a biologically inspired concentrated suspension for protective coating, Chemical Engineering Journal, vol. 428, p. 131793, doi: 10.1016/j.cej.2021.131793, ian. 2022.
[18]. Koohbor B., Ravindran S., Kidane A., A multiscale experimental approach for correlating global and local deformation response in woven composites, Composite Structures, vol. 194, p. 328-334, doi: 10.1016/j.compstruct.2018.04.016, iun. 2018.
[19]. Römelt P., Cunningham P. R., A multi-scale finite element approach for modelling damage progression in woven composite structures, Composite Structures, vol. 94, nr. 3, p. 977-986, doi: 10.1016/j.compstruct.2011.10.024, feb. 2012.
[20]. Jiang H., Ren Y., Gao B., Xiang J., Numerical investigation on links between the stacking sequence and energy absorption characteristics of fabric and unidirectional composite sinusoidal plate, Composite Structures, vol. 171, p. 382-402, doi: 10.1016/j.compstruct.2017.03.047, iul. 2017.
[21]. Saba N., Jawaid M., Epoxy resin based hybrid polymer composites, Hybrid Polymer Composite Materials, Elsevier, p. 57-82, doi: 10.1016/B978-0-08-100787-7.00003-2, 2017.
[22]. Madhavi P., Yadagiri G., Naveen A., Shravan M., Ravi A., Chandra Shekar K., Flexural strength and inter laminar shear strength of carbon fabric and silk satin fabric reinforced hybrid composites, Materials Today: Proceedings, vol. 19, p. 322-328, doi: 10.1016/j.matpr.2019.06.763, 2019.
[23]. Isart N., El Said B., Ivanov D. S., Hallett S. R., Mayugo J. A., Blanco N., Internal geometric modelling of 3D woven composites: A comparison between different approaches, Composite Structures, vol. 132, p. 1219-1230, doi: 10.1016/j.compstruct.2015.07.007, nov. 2015.
[24]. Ismail M., Rejab M. R. M., Siregar J. P., Mohamad Z., Quanjin M., Mohammed A. A., Mechanical properties of hybrid glass fiber/rice husk reinforced polymer composite, Materials Today: Proceedings, vol. 27, p. 1749-1755, doi: 10.1016/j.matpr.2020.03.660, 2020.
[25]. Shamohammadi Maryan M., Ebrahimnezhad-Khaljiri H., Eslami-Farsani R., The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibers-epoxy composites, International Journal of Fatigue, vol. 154, p. 106560, doi: 10.1016/j.ijfatigue.2021.106560, ian. 2022.
[26]. Louwsma J., Carvalho A., Lutz J.-F., Joly S., Chan-Seng D., Adsorption of phenylalanine-rich sequence-defined oligomers onto Kevlar fibers for fiber-reinforced polyolefin composite materials, Polymer, vol. 217, p. 123465, doi: 10.1016/j.polymer.2021.123465, mar. 2021.
[27]. Wang B., et al., Multiscale insights into the stretching behavior of Kevlar fiber, Computational Materials Science, vol. 185, p. 109957, doi: 10.1016/j.commatsci.2020.109957, dec. 2020.
[28]. Li S., et al., Synthesis, processing and characterization of impact hardening gel (IHG) reinforced Kevlar fabric composites, Materials & Design, vol. 195, p. 109039, doi: 10.1016/j.matdes.2020.109039, oct. 2020.
[29]. Chowdhury M. A., et al., Improvement of interfacial adhesion performance of the kevlar fiber mat by depositing SiC/TiO2/Al2O3/graphene nanoparticles, Arabian Journal of Chemistry, vol. 14, nr. 11, p. 103406, doi: 10.1016/j.arabjc.2021.103406, nov. 2021.
[30]. Lu W., Yu W., Zhang B., Dou X., Han X., Cai H., Kevlar fibers reinforced straw wastes-polyethylene composites: Combining toughness, strength and self-extinguishing capabilities, Composites Part B: Engineering, vol. 223, p. 109117, doi: 10.1016/j.compositesb.2021.109117, oct. 2021.
[31]. Singh T. J., Samanta S., Characterization of Kevlar Fiber and Its Composites: A Review, Materials Today: Proceedings, vol. 2, no. 4-5, p. 1381-1387, doi: 10.1016/j.matpr.2015.07.057, 2015.
[32]. Rana R. S., Buddi T., Purohit R., Effect of SiC reinforcement on the mechanical properties of Kevlar fiber based hybrid epoxy composites, Materials Today: Proceedings, vol. 44, p. 2478-2481, doi: 10.1016/j.matpr.2020.12.542, 2021.
[33]. Tilak S. R., Shuib Pasha S. A., Nayeem Ahmed M., Daniel S., An experimental investigation of flexural and inter laminar shear stress on hybrid polymer based composites (E glass fibre – Kevlar fibre with Epoxy resin 5052) for different thickness, Materials Today: Proceedings, vol. 46, p. 8991-8994, doi: 10.1016/j.matpr.2021.05.375, 2021.
[34]. Garoz D., Gilabert F. A., Sevenois R. D. B., Spronk S. W. F., Van Paepegem W., Consistent application of periodic boundary conditions in implicit and explicit finite element simulations of damage in composites, Composites Part B: Engineering, vol. 168, p. 254-266, doi: 10.1016/j.compositesb.2018.12.023, iul. 2019.
[35]. Vedrtnam A., Pawar S. J., Laminated plate theories and fracture of laminated glass plate – A review, Engineering Fracture Mechanics, vol. 186, p. 316-330, doi: 10.1016/j.engfracmech.2017.10.020, dec. 2017.
[36]. Obert E., Daghia F., Ladevèze P., Ballere L., Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization, Composite Structures, vol. 117, p. 212-221, doi: 10.1016/j.compstruct.2014.06.035, nov. 2014.
[37]. Prabhakar M. N., Naga Kumar C., Dong Woo L., Jung-IL S., Hybrid approach to improve the flame-retardant and thermal properties of sustainable biocomposites used in outdoor engineering applications, Composites Part A: Applied Science and Manufacturing, vol. 152, p. 106674, doi: 10.1016/j.compositesa.2021.106674, ian. 2022.
[38]. Pujar V., Devarajaiah R. M., Suresha B., Bharat V., A review on mechanical and wear properties of fiber-reinforced thermoset composites with ceramic and lubricating fillers, Materials Today: Proceedings, p. S2214785321012967, doi: 10.1016/j.matpr.2021.02.214, mar. 2021.
[39]. Mahdi E., Hamouda A. M. S., Energy absorption capability of composite hexagonal ring systems, Materials & Design, vol. 34, p. 201-210, doi: 10.1016/j.matdes.2011.07.070, feb. 2012.
[40]. Swarup Mohanty S., Kumar Rout A., Kumar Jesthi D., Chandra Routara B., Kumar Nayak R., Evaluation of mechanical and wear performance of glass/carbon fiber reinforced polymer hybrid composite, Materials Today: Proceedings, vol. 5, nr. 9, p. 19854-19861, doi: 10.1016/j.matpr.2018.06.350, 2018.
[41]. A. Tabatabaeian, Ghasemi A. R., Curvature changes and weight loss of polymeric nano-composite plates with consideration of the thermal cycle fatigue effects and different resin types: An experimental approach, Mechanics of Materials, vol. 131, p. 69-77, doi: 10.1016/j.mechmat.2019.01.017, apr. 2019.
[42]. Hu J., Liu Y., Zhang S., Tang B., Novel designed core–shell nanofibers constituted by single element-doped BaTiO3 for highenergy–density polymer nanocomposites, Chemical Engineering Journal, vol. 428, p. 131046, doi: 10.1016/j.cej.2021.131046, ian. 2022.
[43]. Suhas S., Raju M. J. S., Vijayan D. S., Natural fibre reinforcement experimental study in polymer composite, Materials Today: Proceedings, vol. 45, p. 6655-6659, doi: 10.1016/j.matpr.2020.12.051, 2021.
[44]. Sliseris J., Yan L., Kasal B., Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites, Composites Part B: Engineering, vol. 89, p. 143-154, doi: 10.1016/j.compositesb.2015.11.038, mar. 2016.
[45]. Oliveira M. S., et al., Statistical analysis of notch toughness of epoxy matrix composites reinforced with fique fabric, Journal of Materials Research and Technology, vol. 8, nr. 6, p. 6051-6057, doi: 10.1016/j.jmrt.2019.09.079, nov. 2019.
[46]. Mu B., Yang Y., Complete separation of colorants from polymeric materials for cost-effective recycling of waste textiles, Chemical Engineering Journal, vol. 427, p. 131570, doi: 10.1016/j.cej.2021.131570, ian. 2022.
[47]. Singh M. K., Singh A., Fibers and fiber-forming polymers, Characterization of Polymers and Fibres, Elsevier, p. 1-27, doi: 10.1016/B978-0-12-823986-5.00002-6, 2022.
[48]. Rizwan K., Rasheed T., Bilal M., Nano-biodegradation of polymers, Biodegradation and Biodeterioration at the Nanoscale, Elsevier, p. 213-238, doi: 10.1016/B978-0-12-823970-4.00010-5, 2022.
[49]. Benin S. R., Kannan S., Bright R. J., Jacob Moses A., A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres, Materials Today: Proceedings, vol. 33, p. 798-805, doi: 10.1016/j.matpr.2020.06.259, 2020.
[50]. Chandekar H., Chaudhari V., Waigaonkar S., A review of jute fiber reinforced polymer composites, Materials Today: Proceedings, vol. 26, p. 2079-2082, doi: 10.1016/j.matpr.2020.02.449, 2020.
[51]. Miller W., Ren Z., Smith C. W., Evans K. E., A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement, Composites Science and Technology, vol. 72, nr. 7, p. 761-766, doi: 10.1016/j.compscitech.2012.01.025, apr. 2012.
[52]. Treutenaere S., Lauro F., Bennani B., Haugou G., Matsumoto T., Mottola E., Constitutive modelling of the strainrate dependency of fabric reinforced polymers, International Journal of Impact Engineering, vol. 108, p. 361-369, doi: 10.1016/j.ijimpeng.2017.04.010, oct. 2017.
[53]. Andrew J. J., Srinivasan S. M., Arockiarajan A., Dhakal H. N., Parameters influencing the impact response of fiberreinforced polymer matrix composite materials: A critical review, Composite Structures, vol. 224, p. 111007, doi: 10.1016/j.compstruct.2019.111007, sep. 2019.
[54]. Koohbor B., Ravindran S., Kidane A., Experimental determination of Representative Volume Element (RVE) size in woven composites, Optics and Lasers in Engineering, vol. 90, p. 59-71, doi: 10.1016/j.optlaseng.2016.10.001, mar. 2017.
[55]. Mahadik Y., Hallett S. R., Finite element modelling of tow geometry in 3D woven fabrics, Composites Part A: Applied Science and Manufacturing, vol. 41, nr. 9, p. 1192-1200, doi: 10.1016/j.compositesa.2010.05.001, sep. 2010.
[56]. Xu W., Waas A. M., Fracture toughness of woven textile composites, Engineering Fracture Mechanics, vol. 169, p. 184-188, doi: 10.1016/j.engfracmech.2016.11.027, ian. 2017.
[57]. Green S. D., Matveev M. Y., Long A. C., Ivanov D., Hallett S. R., Mechanical modelling of 3D woven composites considering realistic unit cell geometry, Composite Structures, vol. 118, p. 284-293, doi: 10.1016/j.compstruct.2014.07.005, dec. 2014.
[58]. Saleh M. N., Lubineau G., Potluri P., Withers P. J., Soutis C., Micro-mechanics based damage mechanics for 3D orthogonal woven composites: Experiment and numerical modelling, Composite Structures, vol. 156, p. 115-124, doi: 10.1016/j.compstruct.2016.01.021, nov. 2016.
[59]. Ansar M., Xinwei W., Chouwei Z., Modeling strategies of 3D woven composites: A review, Composite Structures, vol. 93, no. 8, p. 1947-1963, doi: 10.1016/j.compstruct.2011.03.010, iul. 2011.
[60]. Liu X., Tang T., Yu W., Pipes R. B., Multiscale modeling of viscoelastic behaviors of textile composites, International Journal of Engineering Science, vol. 130, p. 175-186, doi: 10.1016/j.ijengsci.2018.06.003, sep. 2018.
[61]. Mulay S. S., Udhayaraman R., On the constitutive modelling and damage behaviour of plain woven textile composite, International Journal of Solids and Structures, vol. 156-157, p. 73-86, doi: 10.1016/j.ijsolstr.2018.08.002, ian. 2019.
[62]. Mohd Yusoff N. H., Irene Teo L.-R., Phang S. J., Wong V.-L., Cheah K. H., Lim S.-S., Recent Advances in Polymerbased 3D Printing for Wastewater Treatment Application: An Overview, Chemical Engineering Journal, vol. 429, p. 132311, doi: 10.1016/j.cej.2021.132311, feb. 2022.
[63]. Feld N., Coussa F., Delattre B., A novel approach for the strain rate dependent modelling of woven composites, Composite Structures, vol. 192, p. 568-576, doi: 10.1016/j.compstruct.2018.03.053, mai 2018.
[64]. Machado M., Fischlschweiger M., Major Z., A ratedependent non-orthogonal constitutive model for describing shear behaviour of woven reinforced thermoplastic composites, Composites Part A: Applied Science and Manufacturing, vol. 80, p. 194-203, doi: 10.1016/j.compositesa.2015.10.028, ian. 2016.
[65]. Pant S., Laliberte J., Martinez M., Rocha B., Derivation and experimental validation of Lamb wave equations for an nlayered anisotropic composite laminate, Composite Structures, vol. 111, p. 566-579, doi: 10.1016/j.compstruct.2014.01.034, mai 2014.
[66]. Todor M.-P., Kiss I., Cioata V. G., Development of fabricreinforced polymer matrix composites using bio-based components from post-consumer textile waste, Materials Today: Proceedings, vol. 45, p. 4150-4156, doi: 10.1016/j.matpr.2020.11.927, 2021.
[67]. Pant S., Laliberte J., Martinez M., Rocha B., Ancrum D., Effects of composite lamina properties on fundamental Lamb wave mode dispersion characteristics, Composite Structures, vol. 124, p. 236-252, doi: 10.1016/j.compstruct.2015.01.017, iun. 2015.
[68]. Gereke T., Döbrich O., Hübner M., Cherif C., Experimental and computational composite textile reinforcement forming: A review, Composites Part A: Applied Science and Manufacturing, vol. 46, p. 1-10, doi: 10.1016/j.compositesa.2012.10.004, mar. 2013.
[69]. Udhayaraman R., Mulay S. S., Multi-scale approach based constitutive modelling of plain woven textile composites, Mechanics of Materials, vol. 112, p. 172-192, doi: 10.1016/j.mechmat.2017.06.007, sep. 2017.
[70]. Wang L., et al., Progressive failure analysis of 2D woven composites at the meso-micro scale, Composite Structures, vol. 178, p. 395-405, doi: 10.1016/j.compstruct.2017.07.023, oct. 2017.
[71]. Patnaik P. K., Swain P. T. R., Mishra S. K., Purohit A., Biswas S., Recent developments on characterization of needlepunched nonwoven fabric reinforced polymer composites – A review, Materials Today: Proceedings, vol. 26, p. 466-470, doi: 10.1016/j.matpr.2019.12.086, 2020.
[72]. Remanan S., Das T. K., Das N. C., Graphene as a reinforcement in thermoset resins, Polymer Nanocomposites Containing Graphene, Elsevier, p. 317-341, doi: 10.1016/B978-0-12-821639-2.00012-4, 2022.
[73]. Machado M., Murenu L., Fischlschweiger M., Major Z., Analysis of the thermomechanical shear behaviour of wovenreinforced thermoplastic-matrix composites during forming, Composites Part A: Applied Science and Manufacturing, vol. 86, p. 39-48, doi: 10.1016/j.compositesa.2016.03.032, iul. 2016.
[74]. Behera B. K., Dash B. P., Mechanical behavior of 3D woven composites, Materials & Design, vol. 67, p. 261-271, doi: 10.1016/j.matdes.2014.11.020, feb. 2015.
[75]. Nishida H., Carvelli V., Fujii T., Okubo K., Quasi-static and fatigue performance of carbon fibre reinforced highly polymerized thermoplastic epoxy, Composites Part B: Engineering, vol. 144, p. 163-170, doi: 10.1016/j.compositesb.2018.03.002, iul. 2018.
[76]. Verma D., Sharma M., Jain S., An introduction to highperformance advanced polymers composites, their types, processing, and applications in automotive industries, Sustainable Biopolymer Composites, Elsevier, p. 3-26, doi: 10.1016/B978-0-12-822291-1.00004-X, 2022.
[77]. Kulkarni P., Mali K. D., Singh S., An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites, Composites Part A: Applied Science and Manufacturing, vol. 137, p. 106013, doi: 10.1016/j.compositesa.2020.106013, oct. 2020.
[78]. Martínez-Hergueta F., Ares D., Ridruejo A., Wiegand J., Petrinic N., Modelling the in-plane strain rate dependent behaviour of woven composites with special emphasis on the nonlinear shear response, Composite Structures, vol. 210, p. 840-857, doi: 10.1016/j.compstruct.2018.12.002, feb. 2019.
[79]. Kenari M. A., Verma D., An introduction to self-healing of polymer composite materials and conventional repairing process, Sustainable Biopolymer Composites, Elsevier, p. 155-172, doi: 10.1016/B978-0-12-822291-1.00003-8, 2022.
[80]. Naser M. Z., Hawileh R. A., Abdalla J. A., Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review, Engineering Structures, vol. 198, p. 109542, doi: 10.1016/j.engstruct.2019.109542, nov. 2019.
[81]. Meng W., Khayat K. H., Bao Y., Flexural behaviors of fiber-reinforced polymer fabric reinforced ultra-high-performance concrete panels, Cement and Concrete Composites, vol. 93, p. 43-53, doi: 10.1016/j.cemconcomp.2018.06.012, oct. 2018.
[82]. Bal B. C., Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber, Construction and Building Materials, vol. 51, p. 9-14, doi: 10.1016/j.conbuildmat.2013.10.041, ian. 2014.
[83]. Hegemier G., Stewart L., Application of fiber-reinforced polymers to reinforced concrete bridges, Innovative Bridge Design Handbook, Elsevier, p. 933-950. doi: 10.1016/B978-0-12-823550-8.00034-2, 2022.
[84]. Wu Y., Li C., Chen T., Qiu R., Liu W., Photo-curing 3D printing of micro-scale bamboo fibers reinforced palm oil-based thermosets composites, Composites Part A: Applied Science and Manufacturing, vol. 152, p. 106676, doi: 10.1016/j.compositesa.2021.106676, ian. 2022.
[85]. Kubo G., Matsuda T., Sato Y., A novel basic cell modeling method for elastic-viscoplastic homogenization analysis of plainwoven laminates with nesting, International Journal of Mechanical Sciences, vol. 146-147, p. 497-506, doi: 10.1016/j.ijmecsci.2018.01.007, oct. 2018.
[86]. Domun N., et al., Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices, Composites Part B: Engineering, vol. 167, p. 497-506, doi: 10.1016/j.compositesb.2019.03.024, iun. 2019.
[87]. Fiore V., Valenza A., Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites, Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, Elsevier, p. 88-121. doi: 10.1533/9780857098641.1.88, 2013.
[88]. Ali H. T., et al., Fiber reinforced polymer composites in bridge industry, Structures, vol. 30, p. 774-785, doi: 10.1016/j.istruc.2020.12.092, apr. 2021.
[89]. Zhao S., Song Z., Espinosa H. D., Modelling and Analyses of Fiber Fabric and Fabric-Reinforced Polymers under Hypervelocity Impact Using Smooth Particle Hydrodynamics, International Journal of Impact Engineering, vol. 144, p. 103586, doi: 10.1016/j.ijimpeng.2020.103586, oct. 2020.
[90]. Shakir Abbood I., aldeen Odaa S., Hasan K. F., Jasim M. A., Properties evaluation of fiber reinforced polymers and their constituent materials used in structures – A review, Materials Today: Proceedings, vol. 43, p. 1003-1008, doi: 10.1016/j.matpr.2020.07.636, 2021.
[91]. Luo G., Li X., Zhou Y., Sui L., Chen C., Replacing steel stirrups with natural fiber reinforced polymer stirrups in reinforced concrete Beam: Structural and environmental performance, Construction and Building Materials, vol. 275, p. 122172, doi: 10.1016/j.conbuildmat.2020.122172, mar. 2021.
[92]. Cheon J., Lee M., Kim M., Study on the stab resistance mechanism and performance of the carbon, glass and aramid fiber reinforced polymer and hybrid composites, Composite Structures, vol. 234, p. 111690, doi: 10.1016/j.compstruct.2019.111690, feb.
2020.
[93]. Forintos N., Czigany T., Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review, Composites Part B: Engineering, vol. 162, p. 331-343, doi: 10.1016/j.compositesb.2018.10.098, apr. 2019.
[94]. Morampudi P., Namala K. K., Gajjela Y. K., Barath M., Prudhvi G., Review on glass fiber reinforced polymer composites, Materials Today: Proceedings, vol. 43, p. 314-319, doi: 10.1016/j.matpr.2020.11.669, 2021.
[95]. Carpenter A. J., Chocron S., Anderson C. E., Bridging the scales: Continuum-based material constitutive modeling of mechanical and ballistic test data from composites and fabrics, International Journal of Impact Engineering, vol. 120, p. 31-45, doi: 10.1016/j.ijimpeng.2018.05.005, oct. 2018.
[96]. Beauson J., Schillani G., Van der Schueren L., Goutianos S., The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites, Composites Part A: Applied Science and Manufacturing, vol. 152, p. 106668, doi: 10.1016/j.compositesa.2021.106668, ian. 2022.
[97]. Matsuda T., Goto K., Kubota N., Ohno N., Negative through-the-thickness Poisson’s ratio of elastic–viscoplastic angleply carbon fiber-reinforced plastic laminates: Homogenization analysis, International Journal of Plasticity, vol. 63, p. 152-169, doi: 10.1016/j.ijplas.2014.05.007, dec. 2014.
[98]. Olave M., Vara I., Usabiaga H., Aretxabaleta L., Lomov S. V., Vandepitte D., Nesting effect on the mode II fracture toughness of woven laminates, Composites Part A: Applied Science and Manufacturing, vol. 74, p. 174-181, doi: 10.1016/j.compositesa.2015.03.020, iul. 2015.
[99]. Stephen I., Hughes E., Das S., Reinforced concrete beams strengthened with basalt fibre fabric – A parametric study, Structures, vol. 27, p. 309-318, doi: 10.1016/j.istruc.2020.05.008, oct. 2020.
[100]. Azimpour-Shishevan F., Akbulut H., Mohtadi-Bonab M. A., Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites, Polymer Testing, vol.
90, p. 106745, doi: 10.1016/j.polymertesting.2020.106745, oct. 2020.
[101]. Hamoutami J. E., Moustachi O. E. K., The behavior of a reinforced concrete portal frame treated by carbon fiber reinforced polymer (CFRP), Materials Today: Proceedings, vol. 45, p. 7697-7705, doi: 10.1016/j.matpr.2021.03.222, 2021.
[102]. Manocha L. M., Carbon Based Materials, Encyclopedia of Materials: Metals and Allloys, Elsevier, p. 394-419, doi: 10.1016/B978-0-12-819726-4.00098-3, 2022.
[103]. Ascione F., Lamberti M., Napoli A., Razaqpur G., Realfonzo R., An experimental investigation on the bond behavior of steel reinforced polymers on concrete substrate, Composite Structures, vol. 181, p. 58-72, doi: 10.1016/j.compstruct.2017.08.063, dec. 2017.
[104]. Yan L., Kasal B., Huang L., A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering, Composites Part B: Engineering, vol. 92, p. 94-132, doi: 10.1016/j.compositesb.2016.02.002, mai 2016.
[105]. Sethu Ramalingam P., Mayandi K., Srinivasan T., Jerin Leno I., Ravi R., Suresh G., A study on E-Glass fiber reinforced interpenetrating polymer network (vinylester/polyurethane) laminate’s flexural analysis, Materials Today: Proceedings, vol. 33, p. 854-858, doi: 10.1016/j.matpr.2020.06.330, 2020.
[106]. Albert Seldon P., Abilash N., Appraisal on Varied Natural and Artificial Fiber Reinforced Polymeric Composites, Materials Today: Proceedings, vol. 22, p. 3213-3219, doi: 10.1016/j.matpr.2020.03.459, 2020.
[107]. Ferreira Batista M., Basso I., de Assis Toti F., Roger Rodrigues A., Ricardo Tarpani J., Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers, Composite Structures, vol. 251, p. 112625, doi: 10.1016/j.compstruct.2020.112625, nov. 2020.
[108]. Zhang C., Zheng D., Song G.-L., Guo Y., Liu M., Kia H., Influence of microstructure of carbon fibre reinforced polymer on the metal in contact, Journal of Materials Research and Technology, vol. 9, nr. 1, p. 560-573, doi: 10.1016/j.jmrt.2019.10.085, ian. 2020.
[109]. Miura M., Shindo Y., Narita F., Watanabe S., Suzuki M., Mode III fatigue delamination growth of glass fiber reinforced polymer woven laminates at cryogenic temperatures, Cryogenics, vol. 49, nr. 8, p. 407-412, doi: 10.1016/j.cryogenics.2009.05.004, aug. 2009.
[110]. Zhang B., Jia L., Tian M., Ning N., Zhang L., Wang W., Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review, European Polymer Journal, vol. 147, p. 110352, doi: 10.1016/j.eurpolymj.2021.110352, mar. 2021.
[111]. Dong K., Peng X., Zhang J., Gu B., Sun B., Temperaturedependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies, Composite Structures, vol. 176, p. 329-341, doi: 10.1016/j.compstruct.2017.05.036, sep. 2017.
[112]. Espadas-Escalante J. J., van Dijk N. P., Isaksson P., The effect of free-edges and layer shifting on intralaminar and interlaminar stresses in woven composites, Composite Structures, vol. 185, p. 212-220, doi: 10.1016/j.compstruct.2017.11.014, feb. 2018.
[113]. Laffan M. J., Pinho S. T., Robinson P., McMillan A. J., Translaminar fracture toughness testing of composites: A review, Polymer Testing, vol. 31, nr. 3, p. 481-489, doi: 10.1016/j.polymertesting.2012.01.002, mai 2012.
[114]. Sacchetti F., Grouve W. J. B., Warnet L. L., Villegas I. F., Woven fabric composites: Can we peel it?, Procedia Structural Integrity, vol. 2, p. 245-252, doi: 10.1016/j.prostr.2016.06.032, 2016.
[115]. Tambe P., Tanniru M., Sai B. L. N. K., Structural/load bearing characteristics of polymer-graphene composites, Polymer Nanocomposites Containing Graphene, Elsevier, p. 379-400, doi: 10.1016/B978-0-12-821639-2.00005-7, 2022.
[116]. Bhagabati P., Rahaman M., Structure-property relationship in polymer-graphene composites, Polymer Nanocomposites Containing Graphene, Elsevier, p. 299-315, doi: 10.1016/B978-0-12-821639-2.00016-1, 2022.
[117]. Pritzkow W. E. C., Wehner F., Koch D., Oxide Fiber Reinforced Oxide Ceramic Matrix Composite – An Alternative to Metallic Alloys at High Temperature, Encyclopedia of Materials: Metals and Allloys, Elsevier, p. 425-441, doi: 10.1016/B978-0-12-819726-4.00040-5, 2022.
[118]. Park J. K., Kim M. O., The effect of different exposure conditions on the pull-off strength of various epoxy resins, Journal of Building Engineering, vol. 38, p. 102223, doi: 10.1016/j.jobe.2021.102223, iun. 2021.
[119]. da Silva L. R. R., et al., Bio-based one-component epoxy resin: Novel high-performance anticorrosive coating from agroindustrial byproduct, Progress in Organic Coatings, vol. 167, p. 106861, doi: 10.1016/j.porgcoat.2022.106861, iun. 2022.
[120]. Liu Z., Xie C., Tuo X., Laminated aramid nanofiber aerogel reinforced epoxy resin composite, Materials Today Communications, vol. 31, p. 103376, doi: 10.1016/j.mtcomm.2022.103376, iun. 2022.
[121]. Feng Q.-K., et al., Particle packing theory guided multiscale alumina filled epoxy resin with excellent thermal and dielectric performances, Journal of Materiomics, vol. 8, nr. 5, p. 1058-1066, doi: 10.1016/j.jmat.2022.02.008, sep. 2022.
[122]. Ruan K., Zhong X., Shi X., Dang J., Gu J., Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review, Materials Today Physics, vol. 20, p. 100456, doi: 10.1016/j.mtphys.2021.100456, sep. 2021.
[123]. Morsch S., Kefallinou Z., Liu Y., Lyon S. B., Gibbon S. R., Controlling the nanostructure of epoxy resins: Reaction selectivity and stoichiometry, Polymer, vol. 143, p. 10-18, doi: 10.1016/j.polymer.2018.03.065, mai 2018.
[124]. Zhao H., Xu S., Guo A., Li J., Liu D., The Curing Kinetics Analysis of Four Epoxy Resins Using a Diamine Terminated Polyether as Curing Agent, Thermochimica Acta, vol. 702, p. 178987, doi: 10.1016/j.tca.2021.178987, aug. 2021.
[125]. Wang X., Amason A.-C., Lei Y., Gabbard R., Wieland J. A., Gross R. A., Bio-based alternative for encapsulating fragrance oils in epoxy resin microcapsules, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 640, p. 128387, doi: 10.1016/j.colsurfa.2022.128387, mai 2022.
[126]. Lorenz N., et al., Characterization and modeling cure- and pressure-dependent thermo-mechanical and shrinkage behavior of fast curing epoxy resins, Polymer Testing, vol. 108, p. 107498, doi: 10.1016/j.polymertesting.2022.107498, apr. 2022.
[127]. Ratna D., Chemistry and general applications of thermoset resins, Recent Advances and Applications of Thermoset Resins, Elsevier, p. 1-172, doi: 10.1016/B978-0-323-85664-5.00006-5, 2022.
[128]. Wan X., Demir B., An M., Walsh T. R., Yang N., Thermal conductivities and mechanical properties of epoxy resin as a function of the degree of cross-linking, International Journal of Heat and Mass Transfer, vol. 180, p. 121821, doi: 10.1016/j.ijheatmasstransfer.2021.121821, dec. 2021.
[129]. Opelt C. V., Coelho L. A. F., On the pseudo-ductility of nanostructured epoxy resins, Polymer Testing, vol. 78, p. 105961, doi: 10.1016/j.polymertesting.2019.105961, sep. 2019.
[130]. Bhadra S., Nair S., Tailor-made one-part epoxy resin for tire compound to improve ride and handling and reduce rolling resistance, Materials Today: Proceedings, vol. 62, p. 7002-7006, doi: 10.1016/j.matpr.2021.12.544, 2022.
[131]. Cui M., Qing Y., Yang Y., Long C., Liu C., Nanofunctionalized composite-crosslinked epoxy resin for ecofriendly and robust superhydrophobic coating against contaminants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 633, p. 127914, doi: 10.1016/j.colsurfa.2021.127914, ian. 2022.
[132]. Li Y., Huang K., Yu H., Hao L., Guo L., Experimentally validated phase-field fracture modeling of epoxy resins, Composite Structures, vol. 279, p. 114806, doi: 10.1016/j.compstruct.2021.114806, ian. 2022.
[133]. Chen C., et al., Comparative analysis of natural fiber reinforced polymer and carbon fiber reinforced polymer in strengthening of reinforced concrete beams, Journal of Cleaner Production, vol. 263, p. 121572, doi: 10.1016/j.jclepro.2020.121572, aug. 2020.
[134]. Huayamares S., Grund D., Taha I., Comparison between 3-point bending and torsion methods for determining the viscoelastic properties of fiber-reinforced epoxy, Polymer Testing, vol. 85, p. 106428, doi: 10.1016/j.polymertesting.2020.106428, mai 2020.
[135]. Mourad A.-H. I., Idrisi A. H., Zaaroura N., Sherif M. M., Fouad H., Damage assessment of nanofiller-reinforced woven kevlar KM2plus/Epoxy resin laminated composites, Polymer Testing, vol. 86, p. 106501, doi: 10.1016/j.polymertesting.2020.106501, iun. 2020.
[136]. Santhosh G., Rao R. N., Effect of castor oil on mechanical and thermal behaviours of hybrid fibres reinforced epoxy based polymer composites, Materials Today: Proceedings, p. S2214785321017417, doi: 10.1016/j.matpr.2021.02.594, mar. 2021.
[137]. Yang B., Wang S., Wang Y., Effect of Nesting in Laminates on the Through-Thickness Permeability of Woven Fabrics, Appl Compos Mater, vol. 25, nr. 5, p. 1237-1253, doi: 10.1007/s10443-018-9699-8, oct. 2018.
[138]. Dhanush Kumar K. K., Ashish B. V., Vinod B., Evaluation of tensile properties of hybrid kevlar-glass reinforced epoxy composite for multi holes configuration, Materials Today: Proceedings, vol. 44, p. 1065-1070, doi: 10.1016/j.matpr.2020.11.180, 2021.
[139]. Valença S. L., Griza S., de Oliveira V. G., Sussuchi E. M., de Cunha F. G. C., Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric, Composites Part B: Engineering, vol. 70, p. 1-8, doi: 10.1016/j.compositesb.2014.09.040, mar. 2015.
[140]. Xu W., Guo Z. Z., Yu Y., Xiong J., Gao Y., Experimental and analytical characterizations of finite interlaminar crack growth of 2D woven textile composites, Composite Structures, vol. 206, p. 713-721, doi: 10.1016/j.compstruct.2018.08.050, dec. 2018.
[141]. Velmurugan V., Dinesh Kumar D., Thanikaikarasan S., Experimental evaluation of mechanical properties of natural fibre reinforced polymer composites, Materials Today: Proceedings, vol. 33, p. 3383-3388, doi: 10.1016/j.matpr.2020.05.190, 2020.
[142]. Murugan R., Ramesh R., Padmanabhan K., Investigation on Static and Dynamic Mechanical Properties of Epoxy Based Woven Fabric Glass/Carbon Hybrid Composite Laminates, Procedia Engineering, vol. 97, p. 459-468, doi: 10.1016/j.proeng.2014.12.270, 2014.
[143]. Misumi J., Oyama T., Low viscosity and high toughness epoxy resin modified by in situ radical polymerization method for improving mechanical properties of carbon fiber reinforced plastics, Polymer, vol. 156, p. 1-9, doi: 10.1016/j.polymer.2018.09.050, nov. 2018.
[144]. Kiran M. D., Govindaraju H. K., Yadhav B. R. L., Suresha B., Keerthi Kumar N., Fracture toughness study of epoxy composites reinforced with carbon fibers with various thickness, Materials Today: Proceedings, p. S2214785321013584, doi: 10.1016/j.matpr.2021.02.271, mar. 2021.
[145]. Goli E., et al., Frontal polymerization of unidirectional carbon-fiber-reinforced composites”, Composites Part A: Applied Science and Manufacturing, vol. 130, p. 105689, doi: 10.1016/j.compositesa.2019.105689, mar. 2020.
[146]. Dai S., Cunningham P. R., Marshall S., Silva C., Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites, Composites Part A: Applied Science and Manufacturing, vol. 69, p. 195-207, doi: 10.1016/j.compositesa.2014.11.012, feb. 2015.
[147]. Zheng C., Duan F., Liang S., Manufacturing and mechanical performance of novel epoxy resin matrix carbon fiber reinforced damping composites, Composite Structures, vol. 256, p. 113099, doi: 10.1016/j.compstruct.2020.113099, ian. 2021.
[148]. Koirala P., van de Werken N., Lu H., Baughman R. H., Ovalle-Robles R., Tehrani M., Using ultra-thin interlaminar carbon nanotube sheets to enhance the mechanical and electrical properties of carbon fiber reinforced polymer composites, Composites Part B: Engineering, vol. 216, p. 108842, doi: 10.1016/j.compositesb.2021.108842, 2021.
Published
2022-12-15
How to Cite
1.
APARECI (GÎRNEȚ) T, DĂNĂILĂ (ȚÎCĂU) I, PĂDURARU I, CÎRCIUMARU A, GOROVEI M-C. Trends on Reinforced Polymer Composites – A Review. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2022 [cited 19Apr.2024];45(4):62-1. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/5821
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.