Interrelations Between the Enthalpies of Formation of the Sulfur-Containing Amino Acids L-Cystine, L-Cysteine and L-Methionine

  • Stefan PERISANU Department of General Chemistry, Universitatea Naționalǎ de Știință și Tehnologie POLITEHNICA, București, Romania
  • Kathleen F. EDWARDS School of Business, University of Maryland Global Campus, USA
  • Joel F. LIEBMAN Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, USA
Keywords: L-cystine, L-cysteine and L-methionine, enthalpies of formation, reaction, vaporization and sublimation, disulfides, quantum chemical calculations, sulphur-containing amino acids, trichotomy

Abstract

L-Cystine, L-cysteine, and L-methionine are among the twenty-two L-α-amino acids from which all proteins are composed. With their unique sulphur atoms, Lcystine, L-cysteine, and L-methionine have been particularly problematic with regard to both qualitative and quantitative understanding of their energetics, most notably their enthalpies of formation. Using thermochemical quantities from calorimetric experiments (enthalpies of combustion, hydrogenolysis, vaporization, and sublimation), high level quantum chemical calculations, and idealized chemical reactions, these enthalpies of formation are derived and interrelated. In a brief epilogue, the conceptual trichotomy of “convenience, anthropocentrism, and folksonomy” is employed to enhance our thermochemical understanding of these species.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Perişanu St., Gheorghe D., Neacsu A., The enthalpy of formation of l-α-amino acids, Insights in Chemistry and Biochemistry, 1, ICBC MS.ID.000515, DOI: 10.33552/ICBC.2021.01.000515, 2020.
[2]. Roux M. V., et al., Experimental and computational thermochemical study of sulfur-containing amino acids: L-cysteine, L-cystine, and L-cysteine-derived radicals. S-S, S-H, and C-S bond dissociation enthalpies, J. Phys. Chem. B, 114, p. 10530-10540, DOI: 10.1021/jp1025637, 2010.
[3]. Pedley J. B., Thermochemical data and structures of organic compounds, TRC data series, vol. 1, TRC, College Station, 1994.
[4]. Domalski E. S., Hearing E. D., Estimation of the thermodynamic properties of C–H–N–O–S–Halogen compounds at 298.15 K, J. Phys. Chem. Ref. Data, 22, p. 805-1159, DOI: 10.1063/1.555927, 1993.
[5]. Foces-Foces C., Roux M. V., Notario R., Segura M., Thermal behavior and polymorphism in medium-high temperature range of the sulfur containing amino acids L-cysteine and Lcystine, J. Therm. Anal. Calorim, 105, p. 747-756, DOI: 10.1007/s10973-011-1302-6, 2011.
[6]. Acree W. Jr., Chickos J. S., Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015, Part 1. C1 - C10. J. Phys. Chem. Ref. Data, 45, 033101/1-033101/565, DOI: 10.1063/1.4948363, 2016.
[7]. Acree W. Jr., Chickos J. S., Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015, Part 2, C11-C192, J. Phys. Chem. Ref. Data, 46, 013104/1-013104/532, DOI: 10.1063/1.4970519, 2017.
[8]. Chickos J. S., Hesse D. G., Liebman J. F., Panshin S. Y., Estimations of the heats of vaporization of simple hydrocarbon derivatives at 298 K, J. Org. Chem., 53, 3424, DOI: 10.1021/jo00250a004, 1988.
[9]. Roux M. V., et al., The enthalpy of formation of methionine revisited, J. Phys. Org. Chem., 25, p. 916-924, DOI: 10.1002/poc.2961, 2012.
[10]. Chickos J. S., Hesse D. G., Liebman J. F., Estimating vaporization enthalpies of organic compounds with single and multiple substitution, J. Org. Chem., 54, p. 5250-5256, DOI: 10.1021/jo00283a016, 1989.
[11]. Sabbah C. Mindakis, Thermodynamique de substances soufrees. II. Etude thermochimique de la l-cysteine et de la lmethionine, Thermochim. Acta, 43, p. 269-277, DOI: 10.1016/0040-6031(81)85184-2, 1981.
[12]. Yang X. W., et al., Determination of combustion energies of thirteen amino acids, Thermochim. Acta, 329, p. 109-115, DOI: 10.1016/S0040-6031(99)00002-7, 1999.
[13]. Notario R., et al., Experimental and computational study on the energetics of N-acetyl-L-cysteine, J. Chem. Thermodynam., 73, p. 57-61, DOI: 10.1016/j.jct.2013.08.026, 2014.
[14]. Dorofeeva O. V., Ryzhova O. N., Gas-Phase Enthalpies of Formation and Enthalpies of Sublimation of Amino Acids Based on Isodesmic Reaction Calculations, J. Phys. Chem. A, 118, p. 3490-3502, DOI: 10.1021/jp501357y, 2014.
[15]. Karton A., et al., Heats of formation of the amino acids reexamined by means of W1-F12 and W2-F12 theories, Theor Chem Acc, 133, p. 1-15, DOI :10.1007/s00214-014-1483-8, 2014.
[16]. Dorofeeva O. V., Ryzhova O. N., Revision of standard molar enthalpies of formation of glycine and L-alanine in the gaseous phase on the basis of theoretical calculations, J. Chem. Thermodyn, 41, p. 433-438, DOI: 10.1016/j.jct.2008.12.001, 2009.
[17]. Stover L., et al., Fundamental Thermochemical Properties of Amino Acids: Gas-Phase and Aqueous Acidities and Gas-Phase Heats of Formation, J. Phys. Chem. B, 116, p. 2905-2916, DOI: 10.1021/jp207271p, 2012.
[18]. Ruscic B., Bros D. H., Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry, Faraday Discuss, 256, p. 345-372, DOI: 10.1039/D4FD00110A, 2025.
[19]. Loring H. S., du Vigneaud V., The isolation and characterization of mesocystine, J. Biol. Chem., 102, p. 287-295, 1933.
[20]. Apostolos A. J., et al., Facile Synthesis and Metabolic Incorporation of m-DAP Bioisosteres Into Cell Walls of Live Bacteria, ACS Chem. Biol., 15, p. 2066-2075, DOI: 10.1021/acschembio.0c00618, 2020.
[21]. Jacobson S. J., Wilson C. G., Rapoport H., Mechanism of cystine racemization in strong acid, J. Org. Chem., 28, p. 1074-1077, DOI: 10.1021/jo00922a013, 1974.
[22]. Domalski E. S., Selected values of heats of combustion and heats of formation of organic compounds containing the elements carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur, J. Phys. Chem, p. 221-277, DOI: 10.1063/1.3253099, Ref. Data, 1972.
[23]. Edwards K. F., Liebman J. F., Amphoteric, Amphihydric and Ambisaline: Are These Descriptive Concepts Manifestations of Convenience, Anthropocentrism, or Folksonomy?, Intl. J. Chem. Model., 3, p. 213-226, 2011.
[24]. Edwards K. F., Perişanu St., Liebman J. F., The Aromaticity of Benzene and the Lack of Aromaticity of Cyclooctatetraene: Is Our Calorimetric Perspective a Manifestation of Convenience, Anthropocentrism, or Folksonomy, Intl. J. Chem. Model, 5, p. 51-65, 2013.
Published
2025-03-15
How to Cite
1.
PERISANU S, EDWARDS KF, LIEBMAN JF. Interrelations Between the Enthalpies of Formation of the Sulfur-Containing Amino Acids L-Cystine, L-Cysteine and L-Methionine. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2025 [cited 3Jul.2025];48(1):22-7. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/8770
Section
Articles