Pulmonary Trauma and Patient Accommodation with Mechanical Ventilation - Rise Time Settings
Abstract
The inspiratory rise time in mechanical ventilation refers to the rate at which airway pressure reaches the set target during inspiration. When appropriately adjusted, it enhances patient-ventilator synchrony and improves comfort by increasing the tolerance of ventilator support. However, an excessively rapid rise time may result in elevated airway pressures and abrupt gas delivery, potentially contributing to lung injury or increased patient effort. An inverse correlation exists between rise time and the mechanical work of breathing, such that a shorter rise time is associated with a disproportionately increased in respiratory workload. As the intensity of respiratory effort and duration of mechanical ventilation increase, so does the risk of ventilator-associated lung injury (VALI). It is therefore imperative that ventilator manufacturers incorporate adjustable rise time parameters and corresponding time intervals into their devices to allow precise, individualized ventilator settings that minimize the risk of iatrogenic lung injury.
Downloads
Literaturhinweise
[2]. Chiumello D., et al., Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease, Crit Care Med., 35(11), p. 2547-52, doi: 10.1097/01.CCM.0000287594.80110.34. PMID: 17893630, Nov. 2007.
[3]. Kallet R. H., Corral W., Silverman H. J., Luce J. M., Implementation of a low tidal volume ventilation protocol for patients with acute lung injury or acute respiratory distress syndrome, Respir Care., 46(10):1024-37. PMID: 11572755, Oct. 2001.
[4]. Simonis F. D., et al., Effect of a Low vs Intermediate Tidal Volume Strategy on Ventilator-Free Days in Intensive Care Unit Patients Without ARDS: A Randomized Clinical Trial, JAMA, 320(18), p. 1872-1880, doi: 5.1001/jama.2018.14280. PMID: 30357256; PMCID: PMC6248136, Nov. 2018.
[5]. Sison S. M., et al., Mortality outcomes of patients on chronic mechanical ventilation in different care settings: A systematic review, Heliyon, 7(2):e06230, doi: 10.1016/j.heliyon.2021.e06230.Epub 2021 Feb 13. PMID: 33615014; PMCID: PMC7880845, Feb.
2021.
[6]. Donahoe M. P., Current venues of care and related costs for the chronically critically I, ll. Respir. Care., 57(6), p. 867-888, doi: 10.4187/respcare.01656, 2012.
[7]. Bhatraju P. K., Ghassemieh B. J., Nichols M., Covid-19 in critically ill patients in the seattle region - case series, N. Engl. J. Med., 382(21), p. 2012-2022, doi: 10.1056/NEJMoa2004500, 2020.
[8]. Guan W. J., Ni Z. Y., Hu Y., Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med., 382(18), p. 1708-1720, doi: 10.1056/NEJMoa2002032, 2020.
[9]. Wang D., Hu B., Hu C., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA, 323(11), p. 1061-1069, doi: 10.1001/jama.2020.1585, 2020.
[10]. Yang X., Yu Y., Xu J., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, [published correction appears in Lancet Respir Med. 2020 Apr;8(4):e26] Lancet Respir. Med., 8(5), p. 475-481, doi: 10.1016/S2213-2600(20)30079-5, 2020.
[11]. McGrath B. A., Brenner M. J., Warrillow S. J., Tracheostomy in the COVID-19 era: global and multidisciplinary guidance, Lancet Respir. Med., 8(7), p. 717-725, doi: 10.1016/S2213-2600(20)30230-7, 2020.