The Use of Ultrasound in the Treatment Process of Wastewater. A review

  • Nicoleta MATEI "Dunarea de Jos" University of Galati
  • Dan SCARPETE "Dunarea de Jos" University of Galati
Keywords: ultrasound, ultrasonic frequency, cavitation, wastewater treatment

Abstract

In this paper, different types of ultrasound devices for the treatment process of wastewater are presented. The use of ultrasound in treatment processes is a method of perspective, an alternative to conventional methods. This technique is based  in the cavitation phenomenon that occurs in liquids at ultrasonic irradiation and it is used to enhance or ensure the processes of heat and mass transfer. Some of the main advantages of using ultrasound, namely low consumption of additional material or energy, are presented in this paper. The categories of the ultrasonic transmitters distinguished on the basis of the principle underlying the generation of acoustic waves are described.

Creative Commons License

References

[1]. Gerardo L. et al., Increasing stability and transport efficiency of supported liquid membranes through a novel ultrasound-assisted preparation method. Its application to cobalt(II) removal, Ultrasonics Sonochemistry, 20, 2013 p. 650-654.
[2]. Naddeo V. et al., Wastewater disinfection by combination of ultrasound and ultraviolet irradiation, Journal of Hazardous Materials, 168, 2009, p. 925-929.
[3]. H. Hung et al., Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: frequency effects, J. Phys. Chem., A. 103(15), 1999, p. 2734-2739.
[4]. L. Wenjun et al., Removal of Organic Matter and Ammonia Nitrogen in Azodicarbonamide Wastewater by a Combination of Power Ultrasound Radiation and Hydrogen Peroxide, Chinese Journal of Chem., 20, 2012, p. 754-759.
[5]. Parag R. Gogate, Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: A review of the current status and the way forward, Ultrasonics Sonochemistry, 15, 2008, p. 1–15.
[6]. P. Chowdhury et al., Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes–A review, Science of total environ., 407, 2009, p. 2474-2492.
[7]. Suslick K.S., Sonochemistry, Science, 247, 1990, p. 1438-1445.
[8]. Wu T. et al., Advances in Ultrasound Technology for Environmental Remediation, ISBN 978-94-007-5532-1, 2013.
[9]. Y. G. Adewuyi, Sonochemistry: environmental science and engineering applications, Ind. Eng. Chem. Res., 40(22), 2001, p. 4681-4715.
[10]. Pang Y. L. et al., Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination, 277, 2011, p. 1-14.
[11]. P. R. Gogate et al., A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8, 2004, p. 501-551.
[12]. Songlin Wang et al., Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound, Ultrasonics Sonochemistry, 15, 2008, p. 933-937.
[13]. Matouq M. A.-D., Al-Anber Z. A., The application of high frequency ultrasound waves to remove ammonia from simulated industrial wastewater, Ultrasonics Sonochemistry, 14, 2007, p. 393-397.
[14]. Vladimir N. Khmelev et al., Development and Application of Piezoelectric Transducer with the Enlarged Radiation Surface for Wastewater Treatment, 10th International Conference And Seminar Edm'2009, Section Iv, July 1-6, Erlagol.
[15]. Nygren M. W., Finite Element Modeling of Piezoelectric Ultrasonic Transducers, Master of Science in Electronics, 2011.
[16]. Cavill S. A. et al., Electrical control of magnetic reversal processes in magnetostrictive structures, Applied Physics Letters, 102, 2013.
[17]. Zhang H., Power generation transducer from magnetostrictive materials, Applied Physics Letters, 98, 2011.
[18]. Albach T. S. et al., Sound Generation Using a Magnetostrictive Microactuator, Journal of Applied Physics, 109, 2011.
[19]. G. Thoma, M. Gleason, Sonochemical Treatment of Benzene/Toluene Contaminated Wastewater, Environmental Progress, 17, 1998, p. 154-160.
[20]. Hartmann J. et al., New Investigation on the Air Jet Generator for Acoustic Waves, Kongelige Danske Videnskabernes Selskab Matematisk-Fysiske Meddelelser, 7, 1926.
[21]. Hartmann J. et al., A New Acoustic Generator. The Air-JetGenerator, Journal of Scientific Instruments, 4, 1927, p. 101-111.
[22]. Hartmann J., Construction, Performance, and Design of the Acoustic Air-Jet Generator, Journal of Scientific Instruments, 16, 1939, p. 140-149.
[23]. Hartmann J. et al., Synchronization of Air-Jet Generators with an Appendix on the Stem Generator, Kongelige Danske Videnskabernes Selskab Matematisk-Fysiske Meddelelser, 26, 1951.
[24]. Balan G. et al., The sonic technologies, Quatrieme Edition Du Colloque Francophone en Energie, Environnement, Economie et Thermo-dynamique COFRET’08, Nantes, France, 2008, p. 20- 29.
[25]. Stefan A., The research of the physico-chemical parameters of water treated with sonic technology, Journal of science and arts, Târgoviște, 12, 2010, p. 79-82.
[26]. Matei N., Sonic treatment effect on industrial ammonia water decontamination, The Annals of "Dunarea de Jos” University of Galati, ISSN 1221-4558, 2013, p. 62-67.
[27]. Gelate P, Hodnett M, Zeqiri B., Supporting infrastructure and early measurements, National Physical Laboratory Report. Teddington. Middlesex, UK, 2000, p. 2-11.
[28]. ***, Application of Ultrasonic Technology for Water and Wastewater Treatment.
[29]. R. S. C. Cobbold, Foundations of biomedical ultrasound, Oxford University Press, 2006.
[30]. Nygren M., Finite Element Modeling of Piezoelectric Ultrasonic Transducers, Master of Science in Electronics, Norwegian University of Science and Technology, 2011.
[31]. F. J. Fuchs et al., Application of Multiple Frequency Ultrasonics, Blackstone ultrasonics, 716, 2005, p. 665-2340.
[32]. Fabijanski P. et al., Modeling and Identification of Parameters the Piezoelectric Transducers in Ultrasonic Systems, Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, ISBN 978-953-307-350-7, InTech, 2011.
[33]. Gogate P. R. et al., Mapping of sonochemical reactors: review, analysis, and experimental verification, AIChE J. 48, 2002, p. 1542-1560.
[34]. Sostaric J. Z. et al., Advancement of high power ultrasound technology for the destruction of surface active waterborne contaminants, Ultrasonics Sonochemistry, 17, 2010, p. 1021-1026.
[35]. Rochebrochard S. et al., Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor, Ultrasonics Sonochemistry, 19, 2012, p. 280-285.
[36]. ***, Design and calibration of a single-transducer variablefrequency sonication system.
[37]. Matouq M. A. et al., Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave, Ultrasonics Sonochemistry, 15, 2008, p. 869-874.
[38]. Zhang Y. et al., The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: Effect of parameters and degradation pathway, Chemosphere, 82, 2011, p. 1109-1115.
[39]. Young K. et al., Decomposition of monochlorophenols by sonolysis in aqueous solution, Journal of Environmental Engineering and Management, Vol. 16, No. 4, 2006, p. 259-265.
[40]. Gogate P. R. et al., Destruction of formic acid using high frequency cup horn reactor, Water research, 40, 2006, p. 1697-1705.
[41]. Claeyssen F. et al., Actuators, transducers and motors based on giant magnetostrictive materials, Journal of Alloys and Compouns, 258, 1997, p. 61-73.
[42]. Dapino M. et al., A structural-magnetic strain model for magnetostrictive transducers, J of Magnetics, Vol. 36, Issue 3, p. 545-556, ISSN 0018-9464.
[43]. Cullity B.D. et al., Introduction to Magnetic Materials, Wiley, New Jersey, 2009, p. 258.
[44]. Petrier C. et al., Characteristics of Pentachlorophenate Degradation in Aqueous Solution by Means of Ultrasound, Environ. Sci. Technol., 26(8), 1992, p. 1639-1642.
[45]. Pedeflous F., Ultrasonic Transducers: Piezoelectric vs. Magnetostrictive, http://blog.omegasonics.com/archives, 2014.
[46]. ***, Magnetostrictive Versus Piezoelectric Transducers For Power Ultrasonic Applications, www.ctgclean.com.
[47]. Serban A., Utilizarea generatoarelor sonice gazodinamice în procesele tehnologice de epurare a apelor uzate, Ed. Zigotto, Galati, ISBN 978-606-8303-57-4, 2009.
[48]. Magheţi I., Savu M., Teoria şi practica vibraţiilor mecanice, Ed. Didactică şi Pedagogică, Bucureşti, ISBN 978-973-30-1969-9, 2007.
[49]. Bălan G., Principii de elaborare a sistemelor tehnice cu injectoare sonice, Teza de doctor Habilitat, U.T.M., Chişinău, 2001.
[50]. Bălan G. et al., Acoustical research of the sonic air-jet radial generator, Analele Universităţii Maritime, Anul IX, Vol. 11, p. 293-298, ISSN 1582-3601, Constanţa, 2008.
[51]. Graur I. et al., Sonic activation of water derived from aquaculture and microbiological effect, Poss. Conf. Int. „Modern technologies in the food industry - 2012”, Chisinau, 2012.
[52]. Graur I. et al., Effects of Air-Jet Stem Generator and UP400S Treatment on Vitamin C, Colour and pH of Grapefruit Juice, International Journal of Engineering Science and Innovative Technology (IJESIT), Vol. 2, Issue 5, 2013, p. 180-184.
[53]. Bălan V., Balan G., The sonic technology in the beer industry, The Annual Symposium of the Institute of Solid Mechanics SISOM 2012 and Session of the Commission of Acoustics, ISSN: 0035-4074, Bucharest, 2012.
[55]. Stefan A. et al., The physical and chemical indicators at the ultrasound treatment of water with poly aluminium chloride, Annals of Dunarea de Jos University of Galati, Fascicle II, ISSN 2067-2071, 2011, p. 164-170.
[55]. Matei N., Sonic treatment effect on industrial ammonia water decontamination, Annals of Dunarea de Jos University of Galati, Fascicle IV, ISSN 1221-4558, 2013, p. 62-67.
[56]. Bălan G. et al., The sonic technologies, Quatrieme Edition Du Colloque Francophone en Energie, Environnement, Economie et Thermo-dynamique COFRET’08, Nantes, France, 2008, p. 20-29.
Published
2015-06-15
How to Cite
1.
MATEI N, SCARPETE D. The Use of Ultrasound in the Treatment Process of Wastewater. A review. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2015 [cited 20Apr.2024];38(2):45-0. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/1349
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.