Topological Optimization Using Neuronal Algorithm
Keywords:
topology optimization, robot, neuronal algorithm
Abstract
Topological optimization is a type of structural optimization that provides conceptual design for lighter structures. The aim of this method is to maximize system performance for a given set of loads, boundary conditions, and constraints. This method is based on element analysis finished assembly. The design of a lightweight robot is a key point since the weight of the robot is directly proportional to the load capacity of the robot and its motor power. The structural design is iterated in a loop until function convergence achieves the objectives and the atisfying constraints.
Downloads
Download data is not yet available.
References
[1] Syed T., Elias P. K., Amit B., Susmita B., Lisa O., Charitidis C., Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, vol. 1, p. 1-16, 2017.
[2]. Xian L. Z., Yen T. C., Ray M. R., Mattia D., Metcalfe D, Patterson A. D., Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science.
[3]. Sha L., Lin A., Zhao X., Kuang S., A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications, Science Progress, 103(3), 2020.
[4]. Zhu J., Chen X., An engineering constraint method for continuum structural topology optimization, Adv Mech Eng, 9: 1–6, 2017.
[5]. Cavazzuti M., Baldini A., Bertocchi E., et al., High performance automotive chassis design: a topology optimization based approach, Struct Multidiscip Optim, 44, p. 45-56, 2011.
[6]. Duddeck F., Hunkeler S., Lozano P., et al., Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata, Struct Multidiscip Optim, 54, p. 415-428, 2016.
[7]. Wang X., Zhang D., Zhao C., et al., Optimal design of lightweight serial robots by integrating topology optimization and parametric system optimization, Mechanism and Machine Theory, vol. 132, p. 48-65, 2019.
[8]. Long K., Yang X., Saeed N., et al., Topology optimization of transient problem with maximum dynamic response constraint using SOAR scheme, Front. Mech. Eng., 16, p. 593-606, 2021.
[9]. Zargham S., Ward T. A., Ramli R., Badruddin I. A., Topology optimization: a review for structural designs under vibration problems, Struct. Multidiscip. Optim., 53, vol. 6., p. 1157-1177, 2016.
[10]. Kim B. J., Yun D. K., Lee S. H., Jang G. W., Topology optimization of industrial robots for system-level stiffness maximization by using part-level metamodels, Structural and multidisciplinary optimization, 54, p. 1061-1071, 2016.
[11]. Yunfei B., Ming C., Yongyao L., Structural topology optimization for a robot upper arm based on SIMP method, In Advances in Reconfigurable Mechanisms and Robots II, p. 725-733, Springer International Publishing, 2016.
[12]. Briot S., Goldsztejn A., Topology optimization of industrial robots: Application to a five-bar mechanism, Mechanism and Machine Theory, 120, p. 30-56, 2018.
[13]. Park G. J., Technical overview of the equivalent static loads method for non-linear static response structural optimization, Structural and Multidisciplinary Optimization, 43, p. 319-337, 2011.
[14]. Zuo K. T., Chen L. P., Zhang Y. Q., Yang J., Study of key algorithms in topology optimization, The International Journal of Advanced Manufacturing Technology, 32, p. 787-796, 2007.
[15]. Youn B. D., Choi K. K., A new response surface methodology for reliability-based design optimization, Computers & structures, 82(2-3), p. 241-256, 2004.
[16]. Stan S. D., Balan R., Maties V., Multi-objective design optimization of mini parallel robots using genetic algorithms, In 2007 IEEE International Symposium on Industrial Electronics, p. 2173-2178, IEEE, 2007.
[17]. Wang P., Huo X., Wang Z., Topology design and kinematic optimization of cyclical 5-DoF parallel manipulator with proper constrained limb, Advanced Robotics, 31(4), p. 204-219, 2017.
[18]. Liao Z. Y., Wang Y. J., Wang S. T., Optimization design method of variable density lattice structure based on topology optimization, Journal of Mechanical Engineering, 55(8), p. 65-72, 2019.
[19]. Yulin M., Xiaoming W., A level set method for structural topology optimization and its applications, Advances in Engineering Software, 35(7), p. 415-441, 2004.
[20]. Bendson M. P., Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, 71, p. 197-224, 2008.
[2]. Xian L. Z., Yen T. C., Ray M. R., Mattia D., Metcalfe D, Patterson A. D., Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science.
[3]. Sha L., Lin A., Zhao X., Kuang S., A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications, Science Progress, 103(3), 2020.
[4]. Zhu J., Chen X., An engineering constraint method for continuum structural topology optimization, Adv Mech Eng, 9: 1–6, 2017.
[5]. Cavazzuti M., Baldini A., Bertocchi E., et al., High performance automotive chassis design: a topology optimization based approach, Struct Multidiscip Optim, 44, p. 45-56, 2011.
[6]. Duddeck F., Hunkeler S., Lozano P., et al., Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata, Struct Multidiscip Optim, 54, p. 415-428, 2016.
[7]. Wang X., Zhang D., Zhao C., et al., Optimal design of lightweight serial robots by integrating topology optimization and parametric system optimization, Mechanism and Machine Theory, vol. 132, p. 48-65, 2019.
[8]. Long K., Yang X., Saeed N., et al., Topology optimization of transient problem with maximum dynamic response constraint using SOAR scheme, Front. Mech. Eng., 16, p. 593-606, 2021.
[9]. Zargham S., Ward T. A., Ramli R., Badruddin I. A., Topology optimization: a review for structural designs under vibration problems, Struct. Multidiscip. Optim., 53, vol. 6., p. 1157-1177, 2016.
[10]. Kim B. J., Yun D. K., Lee S. H., Jang G. W., Topology optimization of industrial robots for system-level stiffness maximization by using part-level metamodels, Structural and multidisciplinary optimization, 54, p. 1061-1071, 2016.
[11]. Yunfei B., Ming C., Yongyao L., Structural topology optimization for a robot upper arm based on SIMP method, In Advances in Reconfigurable Mechanisms and Robots II, p. 725-733, Springer International Publishing, 2016.
[12]. Briot S., Goldsztejn A., Topology optimization of industrial robots: Application to a five-bar mechanism, Mechanism and Machine Theory, 120, p. 30-56, 2018.
[13]. Park G. J., Technical overview of the equivalent static loads method for non-linear static response structural optimization, Structural and Multidisciplinary Optimization, 43, p. 319-337, 2011.
[14]. Zuo K. T., Chen L. P., Zhang Y. Q., Yang J., Study of key algorithms in topology optimization, The International Journal of Advanced Manufacturing Technology, 32, p. 787-796, 2007.
[15]. Youn B. D., Choi K. K., A new response surface methodology for reliability-based design optimization, Computers & structures, 82(2-3), p. 241-256, 2004.
[16]. Stan S. D., Balan R., Maties V., Multi-objective design optimization of mini parallel robots using genetic algorithms, In 2007 IEEE International Symposium on Industrial Electronics, p. 2173-2178, IEEE, 2007.
[17]. Wang P., Huo X., Wang Z., Topology design and kinematic optimization of cyclical 5-DoF parallel manipulator with proper constrained limb, Advanced Robotics, 31(4), p. 204-219, 2017.
[18]. Liao Z. Y., Wang Y. J., Wang S. T., Optimization design method of variable density lattice structure based on topology optimization, Journal of Mechanical Engineering, 55(8), p. 65-72, 2019.
[19]. Yulin M., Xiaoming W., A level set method for structural topology optimization and its applications, Advances in Engineering Software, 35(7), p. 415-441, 2004.
[20]. Bendson M. P., Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, 71, p. 197-224, 2008.
Published
2023-03-15
How to Cite
1.
PROCOPENCO G, MARIN F-B, MARIN M. Topological Optimization Using Neuronal Algorithm. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2023 [cited 14Sep.2024];46(1):37-0. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/6003
Issue
Section
Articles