Photocatalytic Properties of Semiconductive Oxide Nanoparticles. From Fundamentals to Applications

  • Mariana (BUŞILĂ) IBĂNESCU "Dunarea de Jos" University of Galati, Romania
  • Viorica MUŞAT "Dunarea de Jos" University of Galati, Romania
  • Torsten TEXTOR DeutschesTextilforschungszentrum Nord-West GmbH, Germany
  • Boris MAHLTIG University of Applied Sciences, Mönchengladbach, Germany
Keywords: ZnO nanoparticles, band gap, photocatalysi, antimicrobial activities

Abstract

Photocatalysis is a promising technology that demonstrated important applications in environmental systems such as air purification, pollution removal, self-cleaning and antimicrobial. Semiconductive oxides (e.g., ZnO, TiO2, CuO) are important photocatalytic materials that can act as sensitizes for light based redox processes due to their electronic structure, which is characterized by the conduction-band with electrons (good reductants) and the valence band with holes (powerful oxidants). Excitation of electrons from the conduction-band and valenceband holes can react with electron donors and electron acceptors adsorbed on the semiconductor surface and electric double layer around the particles. The band gap value determines the semiconductive behavior of oxide nanoparticles. The absorption of UV-Vis radiation is an important tool for evaluating photocatalytic behavior of the obtained semiconductive nanoparticles. In this paper we present the correlation between the band gap value, particle size and the photocatalytic activity of ZnO nanoparticles prepared via an aqueous solution chemical method.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. H. Tian, J. F. Ma, K. Li and J. J. Li - Vol. 112, (2008), pp. 47-51.
[2]. N. Daneshvar, D. Salari and A. R. Khataee - Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, (2004), pp. 317-322.
[3]. L. Andronic and A. Duta - Materials Chemistry and Physics, Vol. 112, (2008), pp. 1078-1082.
[4]. Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura and S. Tsuchiya - Chemistry Letters, Vol. 27, (1998), pp. 1253-1257.
[5]. M. Iwasaki, M. Hara, H. Kawada, H. Tada and S. Ito - Journal of Colloid and Interface Science, Vol. 224, (2000), pp. 202-207.
[6]. H. Tian, J. F. Ma, X. Huang, L. J. Xie, Z. Q. Zhao, J. Zhou, P. W. Wu, J. H. Dai, Y. M. Hu, Z. B. Zhu, H. F. Wang and H. Y. Chen - Materials Letters, Vol. 59, (2005), pp. 3059-3061.
[7]. I. Poulios, M. Kositzi and A. Kouras - Journal of Photochemistry and Photobiology A: Chemistry, Vol. 115, (1998), pp. 175-179.
[8]. J. P. Percherancier, R. Chapelion and B. Pouyet - Journal of Photochemistry and Photobiology A: Chemistry, Vol. 87, (1995), pp. 261-265.
[9]. M. C. Yeber, J. Rodriguez, J. Freer, J. Baeza, N. Duran and H. D. Mansilla - Chemosphere, Vol. 39, (1999), pp. 1679-1683.
[10]. A. A. Khodja, T. Sehili, J. F. Pilichowski and P. Boule - Journal of Photochemistry and Photobiology A: Chemistry, Vol. 141, (2001), pp. 231-236.
[11]. C. Marci, V. Augugliaro, M. J. L. Munoz, C. Martin, L. Palmisano, V. Rives, M. Sehhiavello, R. J. D. Tilley and A. M. Venezia - The Journal of Physical Chemistry B, Vol. 105, No. 5, (2001), pp. 1026- 1032.
[12]. C. Lizama, J. Freer, J. Baeza and H. D. Mansilla - Catalysis Today, Vol. 76, (2002), pp. 235-239.
[13]. N. Daneshvar, D. Salari and A. R. Khataee - Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, (2004), pp. 317-322.
[14]. Kathirvelu, S.; Louis, S., Bhaarathi D. - Indian Journal of Science and Technology (2008), 1, 5. [15]. S.Y. Chu, T.M. Yan, S.L. Chen - J. Mater. Sci. Lett. 19 (2000) 349–352.
[16]. M.S. Tokumoto, V. Briois, C.V. Santilli - J. Sol–Gel Sci. Technol. 26 (2003) 547–551.
[17]. J.H. Kim, W.C. Choi, H.Y. Kim, Y. Kang, Y.- K. Park - Powder Technol. 153 (2005) 166–175.
[18]. L.C. Damonte, L.A. Mendoza Zélis, B. Marí Soucase, M.A. Hernández Fenollosa - Powder Technol. 148 (2004), 15–19.
[19]. M.L. Kahn, M. Monge - Adv. Funct. Mater. 3 (2005) 458–468.
[20]. S. Komarneni, M. Bruno, E. Mariani - Mater. Res. Bull. 35 (2000) 1843–1847.
[21]. X.Y. Zhao, B.C. Zheng, C.Z. Li, H.C. Gu - Powder Technol. 100 (1998) 20–23.
[22]. T. Tani, L. Mädler, S.E. Pratsinis - J. Nanopart. Res. 4 (2002) 337–343.
[23]. Z.R. Dai, Z.W. Pan, Z.L. Wang - Adv. Funct. Mater. 13 (2003) 9–24.
[24]. W.Q. Ao, J.Q. Li, H.M. Yang, X.R. Zeng, X.C. Ma - Powder Technol. 168 (2006) 148–151.
[25]. Spanhel, L., Anderson, M. A. - J. Am. Chem. Soc. (1991), 113, 2826
[26]. Jayant Dharma - Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form using a UV/Vis/NIR Spectrometer, PerkinElmer Technical Center; Aniruddha PisaGlobal Application Laboratory PerkinElmer, Inc. Shelton, CT USA.
[27]. Kensal, S. K.; Kaur, N.; Singh, S. - Nanoscale Res. Lett. (2009), 4, 709–716.
Published
2013-06-15
How to Cite
1.
(BUŞILĂ) IBĂNESCU M, MUŞAT V, TEXTOR T, MAHLTIG B. Photocatalytic Properties of Semiconductive Oxide Nanoparticles. From Fundamentals to Applications. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2013 [cited 19Sep.2024];36(2):54-8. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/2840
Section
Articles

Most read articles by the same author(s)

1 2 > >>