Nanocomposite Coatings Obtained by Electro-Co-Deposition of Inert Particles with Cobalt–a Review

  • Florentina Simona ŞORCARU "Dunarea de Jos" University of Galati, Romania
  • Lidia BENEA "Dunarea de Jos" University of Galati, Romania
Keywords: metal–matrix composites (MMCs), nano composites, coating, functional composite, nano particles

Abstract

The paper focuses on review investigations of electrodeposition processes of metallic coatings containing dispersed nanosized particles. The nanosized particles, suspended in the electrolyte by agitation and/or use of surfactants, can be electroco-deposited with the metal. The inclusion of nanosized particles can give (i) increased microhardness and corrosion resistance, (ii) modified growth to form a nanocrystalline metal deposit and (iii) a shift in the reduction potential of a metal ion. Many operating parameters influence the quantity of incorporated particles, including current density, bath agitation (or movement of work piece) and electrolyte composition. High incorporation rates of the dispersed particles have been achieved using (i) a high nanoparticle concentration in the electrolyte solution, (ii) smaller sized nanoparticles; (iii) a low concentration of electroactive species, (iv) ultrasonication during deposition and (v) pulsed current techniques. Compositional gradient coatings are possible having a controlled distribution of particles in the metal deposit and the theoretical models used to describe the phenomenon of particle co-deposition within a metal deposit are critically considered.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. B. J. Hwang, C. S. Hwang - Mechanism of codeposition of silicon carbide with electrolytic cobalt, Journal of the Electrochem. Soc. 140(4) (1993) 979-984.
[2] E. Rudnik - Influence of surface properties of ceramic particles on their incorporation into cobalt electroless deposits, Appl. Surf. Sci. 255 (2008) 2613–2618.
[3] E. Rudnik, L. Burzynska, W. Jakubowska - Codeposition of SiC particles with cobalt matrix, J. Achievements in Materials and Manufacturing Engineering 41 (2010) 195-199.
[4] K. Kumar, R. Chandramohan, D. Kalyanaraman - Effect of heat treatment on cobalt and nickel electroplated surfaces with Cr2O3 dispersions, Appl. Surf. Sci. 227 (2004) 383-386.
[5]. E. P. Rajiv, A. Iyer, S. K. Seshadri - Tribological properties of cobalt-partially stabilized zirconia (PSZ) composites in dry sliding conditions”, Wear 189 (1995) 100-106.
[6]. L. Benea, P. Ponthiaux, F. Wenger - Co-ZrO2 electrodeposited composite coatings exhibiting improved micro hardness and corrosion behaviour in simulating body fluid solution, Surface Coatings Technology, 205 (2011) 5379–5386.
[7]. G. Cârâc, G. A. Bund, D. Thiemig - Electrocodeposition and characterization of cobalt lanthanide oxides composite coatings, Surf. Coat. Technol. 202(2) (2007) 403-411.
[8]. A. Abdel Aal, H. B. Hassan - Electrodeposited nanocomposite coatings for fuel cell application, J. Alloys Compounds xxx (2008) xxx–xxx.
[9]. C. T. J. Low, R. G. A. Wills, F. C. Walsh - Electrodeposition of composite coatings containing nanoparticles in a metal deposit Surface Coatings Technology 201 (2006) 371–383, http://dx.doi.org/10.1016/j.surfcoat.2005.11.123.
[10]. W. Wang, F. Y. Hou, H. Wang, H. T. Guo, Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition, Scripta Materialia 53 (2005) 613–618.
[11]. A. Gomes, I. Pereira, B. Fernández, R. Pereiro - Electrodeposition of Metal Matrix Nanocomposites: Improvement of the Chemical Characterization Techniques, Adv. Nanocomposites - Synthesis, Characterization and Industrial Applications, 503-526.
[12]. Y. Liu, L. Ren, S. Yu, Z. Han - Influence of current density on nano-Al2O3/Ni+Co bionic gradient composite coatings by electrodeposition, Journal of University of Science and Technology Beijing, 15 (5) (2008) 633.
[13]. B. R. Tian, Y. F. Cheng - Electrolytic deposition of Ni–Co–Al2O3 composite coating on pipe steel for corrosion/erosion resistance in oil sand slurry, Electrochimica Acta 53 (2007) 511–517, http://dx.doi.org/10.1016/j.electacta.2007.07.013.
[14]. A. Bund, D. Thiemig, Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel, Surface Coatings Technology 201 (2007) 7092–7099, http://dx.doi.org/10.1016/j.surfcoat.2007.01.010.
[15]. D. Thiemig, A. Bund - Influence of ethanol on the electrocodeposition of Ni/Al2O3 nanocomposite films, Applied Surface Science 255 (2009) 4164–4170, http://dx.doi.org/10.1016/j.apsusc.2008.10.114.
[16]. K. Vathsala, T.V. Venkatesha, Zn–ZrO2 nanocomposite coatings: Elecrodeposition and evaluation of corrosion resistance, Applied Surface Science, In Press, Corrected Proof, (2011), doi:10.1016/j.apsusc.2011.05.067.
[17]. R. Arghavanian, N. P. Ahmadi - The effect of coelectrodeposited ZrO2 particles on the microstructure and corrosion resistance of Ni coatings, J Solid State Electrochem 15 (2011) 2199–2204, DOI 10.1007/s10008-010-1229-z.
[18]. B. M. Praveen, T. V. Venkatesha - Electrodeposition and properties of Zn-nanosized TiO2 composite coatings, Applied Surface Science xxx (2007) xxx–xxx.
[19]. M. S. Ali Eltoum, A. M. Baraka, M. Saber, Elfatih A. Hassan - Electrodeposition and Characterization of Nickel-Titania Nanocomposite Coatings from Gluconate Baths, International Journal Of Multidisciplinary Sciences And Engineering, 2 (4) (2011), [ISSN: 2045-7057], www.ijmse.org.
[20]. M. Srivastava, V. K. William Grips, K. S. Rajam - Electrodeposition of Ni–Co composites containing nano-CeO2 and their structure, properties, Appl. Surf. Sci. 257 (2010) 717–722.
[21]. V. Mangam, K. Das, S. Das - Structure and properties of electrocodeposited Cu–CeO2 nanocomposite thin films, Materials Chemistry and Physics 120 (2010) 631–635.
[22]. B. Bahadormanesh, A. Dolati - The Kinetics of Ni–Co/SiC Composite Coatings Electrodeposition, J. Alloys Compd., 504 (2010) 514–518.
[23]. S. C. Wang, W. C. J. We - Kinetics of electroplating process of nano-sized ceramic particle/Ni composite Materials Chemistry and Physics 78 (2003) 574–580.
[24]. B. R. Tian, Y. F. Cheng - Electrolytic deposition of Ni–Co–Al2O3 composite coating on pipe steel for corrosion/erosion resistance in oil sand slurry, Electrochimica Acta 53 (2007) 511–517, http://dx.doi.org/10.1016/j.electacta.2007.07.013.
[25]. N. Fenineche, C. Coddet, A. Saida - Effect of electrodeposition parameters on the microstructure and mechanical properties of Co-Ni alloys, Surface and Coatings Technology, 41 (1990) 75 - 81.
[26]. A. Abdel Aal - Hard and corrosion resistant nanocomposite coating for Al alloy, Materials Science and Engineering A 474 (2008) 181–187, http://dx.doi.org/10.1016/j.msea.2007.04.058.
[27]. A. Hovestad, L.J.J. Janssen - Electrochemical codeposition of inert particles in a metallic matrix, J. Appl. Electrochem., 25 (1995) 519-527.
[28]. L. Benea, P. L. Bonora, A. Borello, S. Martell - Wear corrosion properties of nano-structured SiC–nickel composite coatings obtained by electroplating, Wear 249 (2002) 995–1003.
[29]. L. Benea, V. Iordache, F. Wenger, P. Ponthiaux - Nanostructured SiC-Ni composite coatings obtained by electrodeposition a tribocorrosion study, The Annals of “Dunarea De Jos” University of Galati, Fascicle IX Metallurgy and Materials Science, 1 (2005) 1453–1457.
[30]. A. F. Zimmerman, G. Palumbo, K. T. Aust, U. Erb - Mechanical properties of nickel silicon carbide nanocomposites, Materials Science and Engineering A 328 (2002) 137–146.
[31]. Y. Zhou, H. Zhang, B. Qian - Friction and wear properties of the co-deposited Ni–SiC nanocomposite coating, Applied Surface Science 253 (2007) 8335–8339, http://dx.doi.org/10.1016/j.apsusc.2007.04.047.
[32]. M. Musiani - Electrodeposition of composites: an expanding subject in electrochemical materials sience, Electrochemica Acta 45 (2000) 3397-3402.
[33]. E. J. Podlaha, Y. Li, J. Zhang, Q. Huang, A. Panda, A. Lozano-Morales, D. Davis, Z. Guo - Electrochemical Deposition of Nanostructured Metals, Copyright 2006 by Taylor & Francis Group, LLC.
[34]. L. P. Bicelli, B. Bozzini, C. Mele, L. D'Urzo - A Review of Nanostructural Aspects of Metal Electrodeposition, Int. J. Electrochem. Sci., 3 (2008) 356 – 408.
[35]. P. Berçot - Dépôts composites par électrolyse. Modélisation, Techniques de l`Ingénieur, traité Matériaux métallique, M 1622, (2003).
[36]. N. Guglielmi - Kinetics of the Deposition of Inert Particles from Electrolytic Baths, Journal of Electrochemical Society, vol. 119 (1972) 1009-1012.
[37]. J. P. Celis, J. R. Roos, C. Buelens - A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix, J. Electrochem. Soc., 134 (1987) 1402-1408.
[38]. M. Srivastava, V. K. W. Grips, A. Jain, K. S. Rajam - Influence of SiC particle size on the structure and tribological properties of Ni–Co composites, Surf. Coat. Technol. 202 (2007) 310–318.
[39]. S. T. Aruna, V. K. W. Grips, K. S. Rajam - Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties, J. Alloy. Compd., 468 (2009) 546–552.
[40]. R. Xu, J. Wang, Z. Guo - High-Temperature Oxidation Behavior of CeO2-SiO2/Ni-W-P Composites, Trans. Nonferrous Met. Soc. China, 19 (2009) 1190-1195.
[41]. A. C. Ciubotariu, L. Benea, M. Lakatos–Varsany, V. Dragan - Electrochemical Impedance Spectroscopy and Corrosion Behaviour of Al2O3–Ni nano Composite Coatings, Electrochim. Acta, 53 (2008) 4557–4563.
[42]. B. Szczygieł, M. Kołodziej - Composite Ni/Al2O3 coatings and their corrosion resistance, Electrochim. Acta 50 (2005) 4188–4195.
[43] Y. Liu, L. Ren, S. Yu, Z. Han - Influence of Current Density on nano-Al2O3/Ni+Co Bionic Gradient Composite Coatings by Electrodeposition.” Materials, 15: (2008) 633.
[44]. Q. Feng, T. Li, H. Teng, X. Zhang, Y. Zhang, C. Liu, J. Jin - Investigation on the Corrosion and Oxidation Resistance of Ni–Al2O3 Nano-Composite Coatings Prepared By Sediment CoDeposition, Surf. Coat. Technol., 202 (2008) 4137–4144.
[45]. X. Bin-shi, W. Hai-dou, D, Shi-yun, J. Bin, T. Wei-yi, Electrodepositing Nickel Silica Nano-Composites Coatings, Electrochem. Commun, 7 (2005) 572–575 (2005).
[46]. W.Y. Tu, B.S. Xu, S.Y. Dong, H. Wang - Electrocatalytic Action of Nano-SiO2 with Electrodeposited Nickel Matrix, Mater. Lett, 60 (2006) 1247–1250.
[47]. Z. Huang, D. Xiong - MoS2 Coated with Al2O3 for Ni−MoS2/Al2O3 Composite Coatings by Pulse Electrodeposition, Surf. Coat. Technol., (2007).
[48]. G. Cârâc, C. Iticescu, L. Benea, T. Lampke, S. Steinhauser - The effect of nano-Al2O3 dispersed phase in nickel matrix electrocodeposited, Revue Roumaine de Chimie, 52(11), 2007, 1057–1062.
[49]. V. Mangam, K. Das, S. Das - Structure and Properties of Electrocodeposited Cu–CeO2 Nanocomposite thin Films, Mater. Chem. Phys., 120 (2010) 631-635.
[50]. A. Machocki, A. Denis, W. Grzegorczyk, W. Gac - Nanoand Micro-Powder of Zirconia and Ceria-Supported Cobalt Catalysts For the Steam Reforming of Bio-ethanol, Appl. Surf. Sci., 256 (2010) 5551–5558.
[51]. N. S. QU, D. Zhu, K. C. Chan - Fabrication of Ni–CeO2 Nanocomposite by Electrodeposition, Scr Mater., 54 (2006) 1421–1425.
[52] P. M. Vereecken, I. Shao, P.C. Searson - Particle Codeposition in Nanocomposite Films Journal of the Electrochemical Society, 147(2000) 2572.
[53]. J. P. Celis, J. R. Roos - Kinetics of the Deposition of Alumina Particles from Copper Sulfate Plating Baths, J. Electrochem. Soc., 124 (10) (1977) 1508-1511.
[54]. C. Buelens, J. P Celis, J. R. Roos - Electrochemical aspects of the codeposition of gold and copper with inert particles, J. Appl. Electrochem., 13 (1983) 541.
[55]. M. H. Fini, A. Amadeh - Corrosion Resistance of AZ91 Magnesium Alloy with Pulse Electrodeposited Ni-SiC Nanocomposite Coating, Journal of Nano- and Electronic Physics, 4 (1), (2012) 01008.
[56] L. Benea, P. L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux, J. Galland - Preparation and investigation of nanostructured SiC–nickel layers by electrodeposition, Solid State Ionics 151 (2002) 89– 95.
[57]. C. Muller, M. Sarret, M. Benballa, ZnNi/SiC composites obtained from an alkaline bath, Surface and Coatings Technology 162 (2002) 49-53.
[58]. M. Srivastava, V.K. W. Grips, K. S. Rajam - Electrochemical deposition and tribological behaviour of Ni and Ni–Co metal matrix composites with SiC nano-particles Applied Surface Science 253, (2007) 3814–3824, http://dx.doi.org/10.1016/j.apsusc.2006.08.022.
[59]. B. R. Tian, Y. F. Cheng, Electrolytic deposition of Ni–Co–Al2O3 composite coating on pipe steel for corrosion/erosion resistance in oil sand slurry, Electrochimica Acta 53 (2007) 511–517, http://dx.doi.org/10.1016/j.electacta.2007.07.013.
[60]. L. M. Chang, M. Z. An, H.F. Guo, S. Y. Shi - Microstructure and properties of Ni–Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition, Applied Surface Science 253 (2006) 2132–2137, http://dx.doi.org/10.1016/j.apsusc.2006.04.018 .
[61]. Y. Matsumoto, H. Ohmura, T. Goto - Effect of lanthanide ions on the electrodeposition of cobalt and manganese oxides. Journal of Electroanalytical Chemistry 399 (1995) 91-96.
[62]. L. Benea - Electrodeposition of Zirconia Particles in a Copper Matrix, Materials and Manufachmring Processes, Vol. 14, No. 2 (1999) 231-242, http://dx.doi.org/10.1080/10426919908914820.
[63]. A. Vlasa, S. Varvara, A. Pop, C. Bulea, L.M. Muresan - Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior, J Appl Electrochem, 40 (2010) 1519–1527, DOI 10.1007/s10800-010-0130-x.
[64]. M. Srivastava, V. K. W. Grips, K. S. Rajam, - Electrodeposition of Ni–Co composites containing nano-CeO2 and their structure, properties, Appl. Surf. Sci. 257 (2010) 717–722.
[65]. H. Gül, F. Kılıc, S. Aslan, A. Alp, H. Akbulut - Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings, Wear 267 (2009) 976–990, http://dx.doi.org/10.1016/j.wear.2008.12.022.
[66]. D. Thiemig, A. Bund - Influence of ethanol on the electrocodeposition of Ni/Al2O3 nanocomposite films, Applied Surface Science 255 (2009) 4164–4170, http://dx.doi.org/10.1016/j.apsusc.2008.10.114.
[67]. E. P. Rajiv, A. Iyer, S. K. Seshadri - Tribological properties of cobalt-partially stabilized zirconia (PSZ) composites in dry sliding conditions, Wear 189 (1995) 100-106.
[68]. Kyle Jiang - Electrochemical Co-deposition of MetalNanoparticle Composites for Microsystem Applications, School of Mechanical Engineering, University of Birmingham, UK, B15 2TT, 391-412.
[69]. R. C. Alkire, D. M. Kolb - Advences in Electrochemical Science and Engineering, volume 7, IWILEY-VCH Verlag GmbH, 69469 Weinheim (Germany), (2002), SBNs: 3-527-29830-4 (Hardcover); 3-527-60026-4 (Electronic), http://www.wiley-vch.de.
[70]. H. Lee, Y. Lee, J. M. Jeon - Codeposition of Micro- and Nano-sized SiC Particles in the Nickel Matrix Composite Coatings Obtained by Electroplating, Surf. Coat. Technol., 201 (2007) 4711-4717.
[71]. I. Dobosz, E. Rudnik, L. Burzynska - Codeposition of SiC particles with electrolytic Nickel” Archives of metallurgy and materials, 56 (2011).
[72]. X. Bin-shi, W. Hai-dou, D, Shi-yun, J. Bin, T. Wei-yi - Electrodepositing Nickel Silica Nano-Composites Coatings, Electrochem. Commun., 7 (2005) 572–575.
[73]. R.K. Saha, T.I. Khan - Effect of applied current on the electrodeposited Ni–Al2O3 composite coatings, Surface & Coatings Technology xxx (2010) xxx–xxx.
[74]. Q. Zhou, H. Ge, G. Wei, Q. Wu - Influence of bath composition on the electrodeposition of Cobalt-Molybdenum amorphous alloy thin films, Materials, 15 (2008) 611.
[75]. E. Gomez, E. Pellicer, E. Valles - Influence of the Bath Composition and the pH on the Induced Cobalt/Molybdenum Electrodeposition, J. Electroanal. Chem. 556 (2003) 137-145.
[76]. B. M. Praveen, T. V. Venkatesha - Electrodeposition and properties of Zn-nanosized TiO2 composite coatings, Applied Surface Science xxx xxx–xxx (2007).
[77]. F. Hou, W. Wang, H.Guo - Effect of the dispersibility of ZrO2 nanoparticles in Ni–ZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings, Applied Surface Science 252 (2006) 3812–3817.
Published
2012-09-15
How to Cite
1.
ŞORCARU FS, BENEA L. Nanocomposite Coatings Obtained by Electro-Co-Deposition of Inert Particles with Cobalt–a Review. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Sep.2012 [cited 29Mar.2024];35(3):27-5. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/2877
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>