Influence of the Nanoparticles Size on the Permeation Properties of the Polymeric Membranes

  • Stefan BALTA "Dunarea de Jos" University of Galati, Romania; K.U. Leuven, Belgium
  • Lidia BENEA "Dunarea de Jos" University of Galati, Romania
  • Bart Van der BRUGGEN K.U. Leuven, Belgium
Keywords: nanofiltration, ZnO nanoparticles, membrane synthesis

Abstract

In this study, polyethersulfone (PES) membranes blended with zinc oxide nanoparticles (ZnO) were manufactured by diffusion induced phase inversion in NMethyl-pyrrolidone (NMP) as solvent and deionized water as coagulant, in view of increasing the properties of the polymeric membranes. Neat PES membranes were modified by dispersing ZnO nanoparticles with two different sizes in a PES casting solution. Four different concentrations of nanoparticles was studied between 0.035 to 1 wt.% for four different concentration of PES (25, 27, 30 and 32 wt.%). The influence of the ZnO nanoparticles size on the permeation performances of PES/ZnO membranes were investigated with contact angle and filtration experiments. The results show an important improvement of the neat membranes properties, permeability and flux, by adding ZnO nanoparticles with two different size even at a smaller concentration, less than 0.5 wt.%. The influence of the nanoparticles size is obvious, decreasing the nanoparticles size, the permeation properties of the polymeric membranes increase.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. L. De Florio, A. Giordano and D. Mattioli, Nanofiltration of low-contaminated textile rinsing effluents for onsite treatment and reuse, Desalination 181 (2005) 283-92.
[2]. G. Cornelis, K. Boussu, B. Van der Bruggen, I. De Vreese, C. Vandecasteele, Nanofiltration of nonionic surfactants: effect of molecular weight cut-off and contact angle on flux behaviour, Ind Eng Chem Res 44 (2005) 7652–7658.
[3]. C. Tang, V. Chen, Nanofiltration of textile wastewater for water reuse, Desalination 143(2002) 11–20.
[4]. IC. Escobar, AA. Randall, SK. Hong, Removal by Nanofiltration: Full and Bench-Scale Evaluation, J Water Sup Res Technol Aqua 51 (2002) 67–76.
[5]. A. Matilainen, R. Liikanen, M. Nystrom, Enhancement of the natural organic matter removal from drinking water by nanofiltration, Environ Technol 25 (2004) 283–91.
[6]. E. Matthiasson, B. Sivik, Concentration polarization and fouling, Desalination 35 (1980) 59.
[7]. D.E. Potts, R.C. Ahlert, S.S.Wang, A critical review of fouling of reverse osmosis membranes, Desalination 36 (1981) 235.
[8]. B. Van der Bruggen, M. Manttari, M. Nystrom, Drawbacks of applying nanofiltration and how to avoid them: A review, Sep Pur Tech 63 (2008) 251–263.
[9]. B. Van der Bruggen, L. Braeken, C. Vandecasteele, Flux decline in nanofiltration due to adsorption of organic compounds, Sep Pur Tech 29 (2002) 23–31.
[10]. L D. Nghiem, PJ. Coleman, C. Espendiller, Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants, Desalination 250 (2010) 682-687.
[11]. L. Braeken, R. Ramaekers, Y. Zhang, G. Maes, B. Van der Bruggen, C. Vandecasteele Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds . J. Membr. Sci. 252 (2005) 195-203.
[12]. JM. Arsuaga, MJ. López-Muñoz, A. Sotto, Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes, Desalination 250 (2010) 829-832.
[13]. L. Braeken L, K. Boussu K, B. Van der Bruggen B, C. Vandecasteele, Modeling of the adsorption of organic compounds on polymeric nanofiltration membranes in solutions containing two compounds, Chemphyschem 6 (2005) 1606-1612.
[14]. J.M. Laine, J.P. Hagstrom, M. Clark, M. Mallevialle, Effects of ultrafiltration membrane composition, J. Am. Water Works Assoc. 81 (1989) 61–67.
[15]. M. Elimelech, X. Zhu, A.E. Childress, S. Hong, Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes, J. Membr. Sci. 127 (1997) 101–109.
[16]. C. Jucker, M.M. Clark, Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes, J. Membr. Sci. 97 (1994) 37–52.
[17]. J. Cho, G. Amy, Interactions between natural organic matter and membranes: rejection and fouling, Water Sci. Technol. 40 (9) (1999) 131–139.
[18]. D.B. Mosqueda-Jimenez, R.M. Narbaitz, T. Matsuura, Membrane fouling test: apparatus evaluation, J. Environ. Eng. ASCE 130 (1) (2004) 90–98.
[19]. H.Q. Lu, L.X. Zhang, W.H. Xing, H.T. Wang, N.P. Xu, Mater. Chem. Phys. 94 (2005) 322.
[20]. A. Bottino, G. Capannelli, V. D’Asti, P. Piaggio, Sep. Purif. Technol. 22 (2001) 269.
[21]. Y.N. Yang, H.X. Zhang, P. Wang, Q.Z. Zheng, J. Li, J. Membr. Sci. 288 (2007) 231.
[22]. Y.N. Yang, P. Wang, Q.Z. Zheng, J. Polym. Sci. Part B: Polym. Phys. 44 (2006) 879.
[23]. L. Yan, Y.S. Li, C.B. Xiang, Polymer 46 (2005) 7701.
[24]. X.C. Cao, J. Ma, X.H. Shi, Z.J. Ren, Appl. Surf. Sci. 253 (2006) 2003.
[25]. L. Yan, Y.S. Li, C.B. Xiang, X.D. Shun, J. Membr. Sci. 276 (2006) 162.
[26]. P. Jian, H. Yahui, W. Yang, L. Linlin, J. Membr. Sci. 284 (2006) 9.
[27]. Y.N. Yang, P. Wang, Polymer 47 (2006) 2683.
[28]. Y. Kong, H.W. Du, J.R. Yang, D.Q. Shi, Y.F. Wang, Y.Y. Zhang, W. Xin, Desalination 146 (2002) 49.
[29]. G. Clarizia, C. Algieria, E. Drioli, Polymer 45 (2004) 5671.
[30]. M. Sairam, M.B. Patil, R.S. Veerapur, S.A. Patil, T.M. Aminabhavi, J. Membr. Sci. 281 (2006) 95.
[31]. Y.N. Yang, H.X. Zhang, P. Wang, Q.Z. Zheng, J. Li, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, J. Membr. Sci. 288 (2007) 231.
[32]. L. Yan, Y.S. Li, C.B. Xiang, Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research, Polymer 46 (2005) 7701.
[33]. X.C. Cao, J. Ma, X.H. Shi, Z.J. Ren, Effect of TiO2 nanoparticle size on the performance of PVDF membrane, Appl. Surf. Sci. 253 (2006) 2003.
[34]. L. Yan, Y.S. Li, C.B. Xiang, X.D. Shun, Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance J., Membr. Sci. 276 (2006) 162.
[35]. P. Jian, H. Yahui, W. Yang, L. Linlin, Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field, J. Membr. Sci. 284 (2006) 9.
[36]. Y.N. Yang, P. Wang, Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process, Polymer 47 (2006) 2683.
[37]. C.M. Wu, T.W. Xu, W.H. Yang, Fundamental studies of a new hybrid (inorganic–organic) positively charged membrane: membrane preparation and characterizations, J. Membr. Sci. 216 (2003) 269.
[38]. T.H. Bae, I.C. Kim, T.M. Tak, Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes, J. Membr. Sci. 275 (2006) 1.
[39]. M.L. Luo, J.Q. Zhao, W. Tang, C.S. Pu, Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles Appl. Surf. Sci. 249 (2005) 76.
Published
2011-03-15
How to Cite
1.
BALTA S, BENEA L, BRUGGEN BV der. Influence of the Nanoparticles Size on the Permeation Properties of the Polymeric Membranes. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2011 [cited 16Sep.2024];34(1):19-4. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/2961
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>